A New Support Vector Data Description with Fuzzy Constraints

Mohammad Ghasemigol, Mostafa Sabzekar, R. Monsefi, Mahmoud Naghibzadeh, H. Yazdi
{"title":"A New Support Vector Data Description with Fuzzy Constraints","authors":"Mohammad Ghasemigol, Mostafa Sabzekar, R. Monsefi, Mahmoud Naghibzadeh, H. Yazdi","doi":"10.1109/ISMS.2010.13","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to eliminate the effect of noisy samples from the learning step of Support Vector Data Description (SVDD) method. SVDD is a popular kernel method which tries to fit a hypersphere around the target object and can obtain more flexible and more accurate data descriptions by using proper kernel functions. Nonetheless, the SVDD could sometimes generate such a loose decision boundary while some noisy samples (outliers) exist in the training set. In order to solve this problem we define fuzzy constraints and two new concepts for each learning sample. Duo to the usage of fuzzy constraints, we called this method Fuzzy Constraints SVDD (FCSVDD). The overall experiments show prominence of our proposed method in comparison with the standard SVDD.","PeriodicalId":434315,"journal":{"name":"2010 International Conference on Intelligent Systems, Modelling and Simulation","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Intelligent Systems, Modelling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMS.2010.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper presents a novel approach to eliminate the effect of noisy samples from the learning step of Support Vector Data Description (SVDD) method. SVDD is a popular kernel method which tries to fit a hypersphere around the target object and can obtain more flexible and more accurate data descriptions by using proper kernel functions. Nonetheless, the SVDD could sometimes generate such a loose decision boundary while some noisy samples (outliers) exist in the training set. In order to solve this problem we define fuzzy constraints and two new concepts for each learning sample. Duo to the usage of fuzzy constraints, we called this method Fuzzy Constraints SVDD (FCSVDD). The overall experiments show prominence of our proposed method in comparison with the standard SVDD.
一种新的模糊约束支持向量数据描述方法
本文提出了一种从支持向量数据描述(SVDD)方法的学习步骤中消除噪声样本影响的新方法。SVDD是一种流行的核方法,它试图在目标物体周围拟合一个超球,通过使用合适的核函数可以获得更灵活、更准确的数据描述。尽管如此,当训练集中存在一些噪声样本(异常值)时,SVDD有时会产生这样一个松散的决策边界。为了解决这个问题,我们为每个学习样本定义了模糊约束和两个新概念。由于模糊约束的使用,我们将这种方法称为模糊约束SVDD (FCSVDD)。总体实验表明,与标准SVDD相比,我们提出的方法具有显著的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信