Battery-Less Face Recognition at the Extreme Edge

Petar Jokic, S. Emery, L. Benini
{"title":"Battery-Less Face Recognition at the Extreme Edge","authors":"Petar Jokic, S. Emery, L. Benini","doi":"10.1109/NEWCAS50681.2021.9462787","DOIUrl":null,"url":null,"abstract":"Machine learning-based face recognition systems are commonly used in mobile platforms to assist the camera systems, unlock the device, or analyze the facial expressions. The computational complexity of the underlying algorithms as well as the power consumption of the entire imaging and processing system largely limit the deployment to powerful mobile processing systems with large rechargeable batteries. However, these computer vision capabilities would also be useful in miniaturized low power applications with stringent battery-size limitations. We assess the feasibility of such a computer vision edge processing system on a battery-less credit card-sized demonstrator using an ultra-low power image sensor and a machine learning system-on- chip, achieving self-sustainable operation using solar energy harvesting with a small on-board solar cell. The tested system enables continuous 1 frame-per-second battery-less imaging and face recognition in indoor lighting conditions.","PeriodicalId":373745,"journal":{"name":"2021 19th IEEE International New Circuits and Systems Conference (NEWCAS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 19th IEEE International New Circuits and Systems Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS50681.2021.9462787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Machine learning-based face recognition systems are commonly used in mobile platforms to assist the camera systems, unlock the device, or analyze the facial expressions. The computational complexity of the underlying algorithms as well as the power consumption of the entire imaging and processing system largely limit the deployment to powerful mobile processing systems with large rechargeable batteries. However, these computer vision capabilities would also be useful in miniaturized low power applications with stringent battery-size limitations. We assess the feasibility of such a computer vision edge processing system on a battery-less credit card-sized demonstrator using an ultra-low power image sensor and a machine learning system-on- chip, achieving self-sustainable operation using solar energy harvesting with a small on-board solar cell. The tested system enables continuous 1 frame-per-second battery-less imaging and face recognition in indoor lighting conditions.
极端边缘的无电池面部识别
基于机器学习的人脸识别系统通常用于移动平台,以辅助相机系统,解锁设备或分析面部表情。底层算法的计算复杂性以及整个成像和处理系统的功耗在很大程度上限制了部署到具有大型可充电电池的强大移动处理系统。然而,这些计算机视觉功能在具有严格电池尺寸限制的小型化低功耗应用中也很有用。我们评估了这种计算机视觉边缘处理系统在无电池信用卡大小的演示器上的可行性,该演示器使用超低功耗图像传感器和机器学习系统芯片,通过使用小型车载太阳能电池收集太阳能实现自我可持续运行。测试系统可在室内照明条件下实现每秒1帧的连续无电池成像和面部识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信