J. Barreras, C. Pinto, R. de Castro, E. Schaltz, M. Swierczynski, S. J. Andreasen, R. Araújo
{"title":"An improved parametrization method for Li-ion linear static Equivalent Circuit battery Models based on direct current resistance measurement","authors":"J. Barreras, C. Pinto, R. de Castro, E. Schaltz, M. Swierczynski, S. J. Andreasen, R. Araújo","doi":"10.1109/SMART.2015.7399223","DOIUrl":null,"url":null,"abstract":"During many years, battery models have been proposed with different levels of accuracy and complexity. In some cases, simple low-order aggregated battery pack models may be more appropriate and feasible than complex physic-chemical or high-order multi-cell battery pack models. For example: in early stages of the system design process, in non-focused battery applications, or whenever low configuration effort or low computational complexity is a requirement. The latter may be the case of Electrical Equivalent Circuit Models (EECM) suitable for energy optimization purposes at a system level in the context of energy management or sizing problem of energy storage systems. In this paper, an improved parametrization method for Li-ion linear static EECMs based on the so called concept of direct current resistance (DCR) is presented. By drawing on a DCR-based parametrization, the influence of both diffusion polarization effects and changing of Open-Circuit Voltage (OCV) are virtually excluded on the estimation of the battery's inner resistance. This results in a parametrization that only accounts for pure ohmic and charge transfer effects, which may be beneficial, since these effects dominate the battery dynamic power response in the range of interest of many applications, including electro-mobility. Model validation and performance evaluation is achieved in simulations by comparison with other low and high order EECM battery models over a dynamic driving profile. Significant improvements in terms of terminal voltage and power losses estimation may be achieved by a DCR-based parametrization, which in its simplest form may only require one short pulse characterization test within a relatively wide range of SoCs and currents. Experimental data from a 53 Ah Li-ion pouch cell produced by Kokam (Type SLPB 120216216) with Nickel Manganese Cobalt oxide (NMC) cathode material is used.","PeriodicalId":365573,"journal":{"name":"2015 International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMART.2015.7399223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
During many years, battery models have been proposed with different levels of accuracy and complexity. In some cases, simple low-order aggregated battery pack models may be more appropriate and feasible than complex physic-chemical or high-order multi-cell battery pack models. For example: in early stages of the system design process, in non-focused battery applications, or whenever low configuration effort or low computational complexity is a requirement. The latter may be the case of Electrical Equivalent Circuit Models (EECM) suitable for energy optimization purposes at a system level in the context of energy management or sizing problem of energy storage systems. In this paper, an improved parametrization method for Li-ion linear static EECMs based on the so called concept of direct current resistance (DCR) is presented. By drawing on a DCR-based parametrization, the influence of both diffusion polarization effects and changing of Open-Circuit Voltage (OCV) are virtually excluded on the estimation of the battery's inner resistance. This results in a parametrization that only accounts for pure ohmic and charge transfer effects, which may be beneficial, since these effects dominate the battery dynamic power response in the range of interest of many applications, including electro-mobility. Model validation and performance evaluation is achieved in simulations by comparison with other low and high order EECM battery models over a dynamic driving profile. Significant improvements in terms of terminal voltage and power losses estimation may be achieved by a DCR-based parametrization, which in its simplest form may only require one short pulse characterization test within a relatively wide range of SoCs and currents. Experimental data from a 53 Ah Li-ion pouch cell produced by Kokam (Type SLPB 120216216) with Nickel Manganese Cobalt oxide (NMC) cathode material is used.