Detecção do Comportamento da Névoa em Sistemas IoT

Franklin M. Ribeiro Junior, Reinaldo A. C. Bianchi, C. Kamienski
{"title":"Detecção do Comportamento da Névoa em Sistemas IoT","authors":"Franklin M. Ribeiro Junior, Reinaldo A. C. Bianchi, C. Kamienski","doi":"10.5753/courb.2022.223453","DOIUrl":null,"url":null,"abstract":"Um sistema IoT baseado em névoa contém milhares de dispositivos heterogêneos com suas próprias limitações. Este artigo propõe um sistema que utiliza aprendizado de máquina para agrupar os comportamentos desses dispositivos e identificar anomalias no desempenho dos diferentes nós de névoa. O sistema foi avaliado para diferentes comportamentos simulados, com os algoritmos MeanShift, BIRCH e K-Means. Também foram validados os agrupamentos gerados pelos índices de Silhouette, Davies-Bouldin e Calinski Harabasz, a fim de obter o modelo de dados mais acurado. O sistema identificou os comportamentos simulados com pelo menos 99% de acurácia, usando o algoritmo K-Means e o índice de Calinski-Harabasz.","PeriodicalId":174255,"journal":{"name":"Anais do VI Workshop de Computação Urbana (CoUrb 2022)","volume":"200 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do VI Workshop de Computação Urbana (CoUrb 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/courb.2022.223453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Um sistema IoT baseado em névoa contém milhares de dispositivos heterogêneos com suas próprias limitações. Este artigo propõe um sistema que utiliza aprendizado de máquina para agrupar os comportamentos desses dispositivos e identificar anomalias no desempenho dos diferentes nós de névoa. O sistema foi avaliado para diferentes comportamentos simulados, com os algoritmos MeanShift, BIRCH e K-Means. Também foram validados os agrupamentos gerados pelos índices de Silhouette, Davies-Bouldin e Calinski Harabasz, a fim de obter o modelo de dados mais acurado. O sistema identificou os comportamentos simulados com pelo menos 99% de acurácia, usando o algoritmo K-Means e o índice de Calinski-Harabasz.
物联网系统中的雾行为检测
一个基于雾的物联网系统包含数千个异构设备,它们都有自己的局限性。本文提出了一个系统,利用机器学习对这些设备的行为进行分组,并识别不同雾节点的性能异常。采用均值移位算法、BIRCH算法和K-均值算法对系统的不同模拟行为进行了评估。为了获得最准确的数据模型,还验证了由Silhouette、Davies-Bouldin和Calinski Harabasz指数生成的聚类。该系统使用K-Means算法和Calinski-Harabasz指数识别模拟行为,准确率至少为99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信