Imputing Missing Values in the US Census Bureau's County Business Patterns

Peter K. Schott, Natalie Yang, Fabian Eckert, Teresa C. Fort
{"title":"Imputing Missing Values in the US Census Bureau's County Business Patterns","authors":"Peter K. Schott, Natalie Yang, Fabian Eckert, Teresa C. Fort","doi":"10.3386/w26632","DOIUrl":null,"url":null,"abstract":"The County Business Patterns data published by the US Census Bureau track employment by county and industry from 1946 to the present. Two features of the data limit their usefulness to researchers in practice: (1) employment for the majority of county-industry cells is suppressed to protect confidentiality, and (2) industry classifications change over time. We address both issues. First, we develop a linear programming method that exploits the large set of adding-up constraints implicit in the hierarchical arrangement of the data to impute missing employment. Second, we provide concordances to map all data to a consistent set of industry codes.","PeriodicalId":403294,"journal":{"name":"CEPR: Macroeconomics & Growth (Topic)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEPR: Macroeconomics & Growth (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3386/w26632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

Abstract

The County Business Patterns data published by the US Census Bureau track employment by county and industry from 1946 to the present. Two features of the data limit their usefulness to researchers in practice: (1) employment for the majority of county-industry cells is suppressed to protect confidentiality, and (2) industry classifications change over time. We address both issues. First, we develop a linear programming method that exploits the large set of adding-up constraints implicit in the hierarchical arrangement of the data to impute missing employment. Second, we provide concordances to map all data to a consistent set of industry codes.
美国人口普查局县商业模式中缺失价值的估算
美国人口普查局发布的县商业模式数据追踪了1946年至今各县和行业的就业情况。数据的两个特征限制了它们在实践中对研究人员的有用性:(1)大多数县-工业细胞的就业被抑制以保护机密性,(2)行业分类随时间而变化。我们解决了这两个问题。首先,我们开发了一种线性规划方法,该方法利用数据分层排列中隐含的大量加法约束来估算缺失就业。其次,我们提供了将所有数据映射到一组一致的行业代码的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信