{"title":"Getting to the bottom of deep submicron","authors":"D. Sylvester, K. Keutzer","doi":"10.1145/288548.288614","DOIUrl":null,"url":null,"abstract":"We take a fresh look at the problems posed by deep submicron (DSM) geometries and re-open the investigation into how DSM effects are most likely to affect future design methodologies. We describe a comprehensive approach to accurately characterize the device and interconnect characteristics of present and future process generations. This approach results in the generation of a representative strawman technology that is used in conjunction with analytical model simulation tools and empirical design data to obtain a realistic picture of the future of circuit design. We then proceed to quantify the precise impact of interconnect, including delay degradation due to noise, on high performance ASIC designs. Having determined the role of interconnect in performance, we then reconsider the impact of future processes on ASIC design methodology.","PeriodicalId":224802,"journal":{"name":"1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"338","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/288548.288614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 338
Abstract
We take a fresh look at the problems posed by deep submicron (DSM) geometries and re-open the investigation into how DSM effects are most likely to affect future design methodologies. We describe a comprehensive approach to accurately characterize the device and interconnect characteristics of present and future process generations. This approach results in the generation of a representative strawman technology that is used in conjunction with analytical model simulation tools and empirical design data to obtain a realistic picture of the future of circuit design. We then proceed to quantify the precise impact of interconnect, including delay degradation due to noise, on high performance ASIC designs. Having determined the role of interconnect in performance, we then reconsider the impact of future processes on ASIC design methodology.