BER performance improvement of an FNN based equaliser using fuzzy tuned sigmoidal activation function

J. Satapathy, S. Das
{"title":"BER performance improvement of an FNN based equaliser using fuzzy tuned sigmoidal activation function","authors":"J. Satapathy, S. Das","doi":"10.1109/SPCOM.2004.1458504","DOIUrl":null,"url":null,"abstract":"Adaptive equalisers are characterised in general by their structures, the learning algorithms and the use of training sequences. This paper presents a novel technique of improving the performance of conventional multilayer perceptron (MLP) based decision feedback equaliser (DFE) of reduced structural complexity by adapting the slope of the sigmoidal activation function using fuzzy logic control technique. The adaptation of the slope parameter increases the degrees of freedom in the weight space of the conventional feedforward neural network (CFNN) configuration. Application of this technique reduces the structural complexity of a conventional FNN equaliser, provides faster learning and significant performance gain.","PeriodicalId":424981,"journal":{"name":"2004 International Conference on Signal Processing and Communications, 2004. SPCOM '04.","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on Signal Processing and Communications, 2004. SPCOM '04.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPCOM.2004.1458504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Adaptive equalisers are characterised in general by their structures, the learning algorithms and the use of training sequences. This paper presents a novel technique of improving the performance of conventional multilayer perceptron (MLP) based decision feedback equaliser (DFE) of reduced structural complexity by adapting the slope of the sigmoidal activation function using fuzzy logic control technique. The adaptation of the slope parameter increases the degrees of freedom in the weight space of the conventional feedforward neural network (CFNN) configuration. Application of this technique reduces the structural complexity of a conventional FNN equaliser, provides faster learning and significant performance gain.
利用模糊调谐s型激活函数改进基于FNN的均衡器误码率性能
一般来说,自适应均衡器的特点是它们的结构、学习算法和训练序列的使用。本文提出了一种利用模糊逻辑控制技术,通过调整s型激活函数的斜率来改善基于多层感知器(MLP)的决策反馈均衡器(DFE)的性能,从而降低结构复杂度。斜率参数的自适应增加了传统前馈神经网络(CFNN)结构在权空间中的自由度。该技术的应用降低了传统FNN均衡器的结构复杂性,提供了更快的学习速度和显著的性能增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信