CAD-based methods for thermal modeling of coolant loops and heat pipes

D.A. Johnson, J. Baumann, B. Cullimore
{"title":"CAD-based methods for thermal modeling of coolant loops and heat pipes","authors":"D.A. Johnson, J. Baumann, B. Cullimore","doi":"10.1109/ITHERM.2002.1012437","DOIUrl":null,"url":null,"abstract":"As air cooling of electronics reaches the limits of its applicability, the next generation of cooling technology is likely to involve heat pipes and single- or two-phase coolant loops. These technologies are not suitable for analysis using 2D/3D computational fluid dynamics (CFD) software, and yet the geometric complexities of the thermal/structural models make network-style schematic modeling methods cumbersome. This paper describes CAD line-drawing methods to quickly generate 1D fluid models of heat pipes and coolant loops within a 3D thermal model. These arcs and lines can be attached intimately or via lineal contact or saddle resistances to plates and other surfaces, whether those surfaces are modeled using thermal finite difference methods (FDM) or finite element methods (FEM) or combinations of both. The fluid lines can also be manifolded and customized as needed to represent complex heat exchangers and plumbing arrangements. To demonstrate these concepts, two distinct examples are developed: a copper-water heat pipe, and an aluminum-ammonia loop heat pipe (LHP) with a serpentined condenser. A summary of the numerical requirements for system-level modeling of these devices is also provided.","PeriodicalId":299933,"journal":{"name":"ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2002.1012437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

As air cooling of electronics reaches the limits of its applicability, the next generation of cooling technology is likely to involve heat pipes and single- or two-phase coolant loops. These technologies are not suitable for analysis using 2D/3D computational fluid dynamics (CFD) software, and yet the geometric complexities of the thermal/structural models make network-style schematic modeling methods cumbersome. This paper describes CAD line-drawing methods to quickly generate 1D fluid models of heat pipes and coolant loops within a 3D thermal model. These arcs and lines can be attached intimately or via lineal contact or saddle resistances to plates and other surfaces, whether those surfaces are modeled using thermal finite difference methods (FDM) or finite element methods (FEM) or combinations of both. The fluid lines can also be manifolded and customized as needed to represent complex heat exchangers and plumbing arrangements. To demonstrate these concepts, two distinct examples are developed: a copper-water heat pipe, and an aluminum-ammonia loop heat pipe (LHP) with a serpentined condenser. A summary of the numerical requirements for system-level modeling of these devices is also provided.
基于cad的冷却剂回路和热管热建模方法
随着电子产品的空气冷却达到其适用性的极限,下一代冷却技术可能涉及热管和单相或两相冷却剂循环。这些技术不适合使用2D/3D计算流体动力学(CFD)软件进行分析,而热/结构模型的几何复杂性使得网络式原理图建模方法非常繁琐。本文介绍了在三维热模型中快速生成热管和冷却剂回路的一维流体模型的CAD绘图方法。这些弧和线可以紧密连接或通过线性接触或鞍形电阻连接到板和其他表面,无论这些表面是使用热有限差分方法(FDM)或有限元方法(FEM)或两者的组合建模的。流体管线也可以根据需要进行歧管和定制,以代表复杂的热交换器和管道安排。为了演示这些概念,开发了两个不同的例子:铜-水热管和带有蛇形冷凝器的铝-氨循环热管(LHP)。本文还总结了对这些器件进行系统级建模的数值要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信