Respiratory sound classification using perceptual linear prediction features for healthy - Pathological diagnosis

Sezer Ulukaya, Y. Kahya
{"title":"Respiratory sound classification using perceptual linear prediction features for healthy - Pathological diagnosis","authors":"Sezer Ulukaya, Y. Kahya","doi":"10.1109/BIYOMUT.2014.7026343","DOIUrl":null,"url":null,"abstract":"This study proposes a new model and feature extraction method for the classification of multi-channel respiratory sound data with the final aim of building a diagnosis aid tool for the medical doctor. Fourteen-channel data are processed separately and combined at feature level and fed to the support vector machines with radial basis kernel. Healthy-pathological subject based binary classification is employed where the recall rates for the healthy class and pathological class are 95 percent and 80 percent, respectively. The minimum precision rate is 80 percent. The method, when supported by additional features (adventitious sound frequency, type, etc.), may be employed in clinical practice as an aiding decision maker.","PeriodicalId":428610,"journal":{"name":"2014 18th National Biomedical Engineering Meeting","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 18th National Biomedical Engineering Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIYOMUT.2014.7026343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This study proposes a new model and feature extraction method for the classification of multi-channel respiratory sound data with the final aim of building a diagnosis aid tool for the medical doctor. Fourteen-channel data are processed separately and combined at feature level and fed to the support vector machines with radial basis kernel. Healthy-pathological subject based binary classification is employed where the recall rates for the healthy class and pathological class are 95 percent and 80 percent, respectively. The minimum precision rate is 80 percent. The method, when supported by additional features (adventitious sound frequency, type, etc.), may be employed in clinical practice as an aiding decision maker.
基于感知线性预测特征的呼吸声分类用于健康-病理诊断
本研究提出了一种新的多通道呼吸声数据分类模型和特征提取方法,最终目的是为医生构建一个诊断辅助工具。将14个通道的数据分别处理,并在特征层进行组合,并将其送入径向基核支持向量机。采用基于健康-病理主体的二分类,健康类和病理类的查全率分别为95%和80%。最小精度为80%。该方法在附加特征(非定音频率、类型等)的支持下,可作为辅助决策工具应用于临床实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信