Forecasting oil production by adaptive neuro fuzzy inference system

Morteza Saberi, A. Azadeh, S. Ghorbani
{"title":"Forecasting oil production by adaptive neuro fuzzy inference system","authors":"Morteza Saberi, A. Azadeh, S. Ghorbani","doi":"10.1109/ISIE.2008.4676919","DOIUrl":null,"url":null,"abstract":"In this paper, the efficiency of neuro fuzzy network (ANFIS) is examined against auto regression (AR). Mean absolute percentage error (MAPE) is applied for this purpose. After applying different data preprocessing methods, the models are developed. A method for calculating ANFIS performance is also proposed. Due to various seasonal and monthly changes in oil production and difficulties in modeling it with conventional methods, we consider a case study in four countries for oil production estimation. Finally, analysis of variance (ANOVA) and Duncan Multiple Range Test (DMRT) is conducted for each country to evaluate the most efficient method.","PeriodicalId":262939,"journal":{"name":"2008 IEEE International Symposium on Industrial Electronics","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Industrial Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2008.4676919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the efficiency of neuro fuzzy network (ANFIS) is examined against auto regression (AR). Mean absolute percentage error (MAPE) is applied for this purpose. After applying different data preprocessing methods, the models are developed. A method for calculating ANFIS performance is also proposed. Due to various seasonal and monthly changes in oil production and difficulties in modeling it with conventional methods, we consider a case study in four countries for oil production estimation. Finally, analysis of variance (ANOVA) and Duncan Multiple Range Test (DMRT) is conducted for each country to evaluate the most efficient method.
自适应神经模糊推理系统预测石油产量
本文研究了神经模糊网络(ANFIS)对自回归(AR)的有效性。平均绝对百分比误差(MAPE)用于此目的。应用不同的数据预处理方法,建立了模型。提出了一种计算ANFIS性能的方法。由于石油产量的各种季节性和月度变化以及用常规方法建模的困难,我们考虑了一个在四个国家进行石油产量估计的案例研究。最后,对每个国家进行方差分析(ANOVA)和邓肯多元范围检验(DMRT),以评估最有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信