Immune Co-evolution Algorithm based on Chaotic Optimization

Qiuyong Zhao, J. Ren, Zehua Zhang, Fu Duan
{"title":"Immune Co-evolution Algorithm based on Chaotic Optimization","authors":"Qiuyong Zhao, J. Ren, Zehua Zhang, Fu Duan","doi":"10.1109/IITA.2007.38","DOIUrl":null,"url":null,"abstract":"This paper combines the advantages of chaos theory, co-evolution algorithm and immune algorithm, and proposes a new hybrid evolutionary algorithm: chaotic immune co-evolution algorithm (CICA). CICA on the basis of the traversal and internal randomicity of the chaos theory, the memory and diversity of the biological immunity and the mechanism of cooperative evolution in the nature can effectively overcome the shortcomings of genetic algorithm, such as the lack of convergence efficiency and local optimization. This paper sets up a CICA model, designs and describes the main flow of this algorithm. More important, we simulate and test the CICA using the standard testing function and bier- 127 TSP. Compared the results with those of the other hybrid evolutionary algorithms, we find that CICA can promise the global optimization and high convergence efficiency, more effective than genetic algorithm and artificial immune algorithm.","PeriodicalId":191218,"journal":{"name":"Workshop on Intelligent Information Technology Application (IITA 2007)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Intelligent Information Technology Application (IITA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITA.2007.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper combines the advantages of chaos theory, co-evolution algorithm and immune algorithm, and proposes a new hybrid evolutionary algorithm: chaotic immune co-evolution algorithm (CICA). CICA on the basis of the traversal and internal randomicity of the chaos theory, the memory and diversity of the biological immunity and the mechanism of cooperative evolution in the nature can effectively overcome the shortcomings of genetic algorithm, such as the lack of convergence efficiency and local optimization. This paper sets up a CICA model, designs and describes the main flow of this algorithm. More important, we simulate and test the CICA using the standard testing function and bier- 127 TSP. Compared the results with those of the other hybrid evolutionary algorithms, we find that CICA can promise the global optimization and high convergence efficiency, more effective than genetic algorithm and artificial immune algorithm.
基于混沌优化的免疫协同进化算法
本文结合混沌理论、协同进化算法和免疫算法的优点,提出了一种新的混合进化算法:混沌免疫协同进化算法(CICA)。CICA基于混沌理论的遍历性和内在随机性、生物免疫的记忆性和多样性以及自然界协同进化机制,可以有效克服遗传算法缺乏收敛效率和局部寻优等缺点。本文建立了CICA模型,设计并描述了该算法的主要流程。更重要的是,我们使用标准测试函数和bier- 127 TSP对CICA进行了模拟和测试。结果表明,CICA算法具有全局最优性和较高的收敛效率,优于遗传算法和人工免疫算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信