Reinforcement Learning for Continuous Control: A Quantum Normalized Advantage Function Approach

Yaofu Liu, Chang Xu, Siyuan Jin
{"title":"Reinforcement Learning for Continuous Control: A Quantum Normalized Advantage Function Approach","authors":"Yaofu Liu, Chang Xu, Siyuan Jin","doi":"10.1109/QSW59989.2023.00020","DOIUrl":null,"url":null,"abstract":"In this study, we present a new approach to quantum reinforcement learning that can handle tasks with a range of continuous actions. Our method uses a quantum version of the classic normalized advantage function (QNAF), only needing the Q-value network created by a quantum neural network and avoiding any policy network. We implemented the method by TensorFlow framework. When tested against standard Gym benchmarks, QNAF outperforms classical NAF and prior quantum methods in terms of fewer adjustable parameters. Furthermore, it shows improved stability, reliably converging regardless of changes in initial random parameters.","PeriodicalId":254476,"journal":{"name":"2023 IEEE International Conference on Quantum Software (QSW)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Quantum Software (QSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QSW59989.2023.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we present a new approach to quantum reinforcement learning that can handle tasks with a range of continuous actions. Our method uses a quantum version of the classic normalized advantage function (QNAF), only needing the Q-value network created by a quantum neural network and avoiding any policy network. We implemented the method by TensorFlow framework. When tested against standard Gym benchmarks, QNAF outperforms classical NAF and prior quantum methods in terms of fewer adjustable parameters. Furthermore, it shows improved stability, reliably converging regardless of changes in initial random parameters.
连续控制的强化学习:量子归一化优势函数方法
在这项研究中,我们提出了一种新的量子强化学习方法,可以处理一系列连续动作的任务。我们的方法使用经典归一化优势函数(QNAF)的量子版本,只需要量子神经网络创建的q值网络,避免了任何策略网络。我们通过TensorFlow框架实现了该方法。在针对标准Gym基准进行测试时,QNAF在可调参数较少方面优于经典NAF和先前的量子方法。此外,无论初始随机参数如何变化,该方法都具有较好的稳定性和可靠的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信