Robot localization using soft object detection

Roy Anati, D. Scaramuzza, K. Derpanis, Kostas Daniilidis
{"title":"Robot localization using soft object detection","authors":"Roy Anati, D. Scaramuzza, K. Derpanis, Kostas Daniilidis","doi":"10.1109/ICRA.2012.6225216","DOIUrl":null,"url":null,"abstract":"In this paper, we give a new double twist to the robot localization problem. We solve the problem for the case of prior maps which are semantically annotated perhaps even sketched by hand. Data association is achieved not through the detection of visual features but the detection of object classes used in the annotation of the prior maps. To avoid the caveats of general object recognition, we propose a new representation of the query images that consists of a vector of the detection scores for each object class. Given such soft object detections we are able to create hypotheses about pose and to refine them through particle filtering. As opposed to small confined office and kitchen spaces, our experiment takes place in a large open urban rail station with multiple semantically ambiguous places. The success of our approach shows that our new representation is a robust way to exploit the plethora of existing prior maps for GPS-denied environments avoiding the data association problems when matching point clouds or visual features.","PeriodicalId":246173,"journal":{"name":"2012 IEEE International Conference on Robotics and Automation","volume":"191 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2012.6225216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

In this paper, we give a new double twist to the robot localization problem. We solve the problem for the case of prior maps which are semantically annotated perhaps even sketched by hand. Data association is achieved not through the detection of visual features but the detection of object classes used in the annotation of the prior maps. To avoid the caveats of general object recognition, we propose a new representation of the query images that consists of a vector of the detection scores for each object class. Given such soft object detections we are able to create hypotheses about pose and to refine them through particle filtering. As opposed to small confined office and kitchen spaces, our experiment takes place in a large open urban rail station with multiple semantically ambiguous places. The success of our approach shows that our new representation is a robust way to exploit the plethora of existing prior maps for GPS-denied environments avoiding the data association problems when matching point clouds or visual features.
基于软目标检测的机器人定位
在本文中,我们对机器人定位问题提出了一种新的双重视角。我们解决了先前地图的问题,这些地图在语义上进行了注释,甚至可能是手工绘制的草图。数据关联不是通过检测视觉特征实现的,而是通过检测先前地图注释中使用的对象类来实现的。为了避免一般对象识别的警告,我们提出了一种新的查询图像表示,该表示由每个对象类别的检测分数向量组成。有了这样的软物体检测,我们就可以创建关于姿态的假设,并通过粒子过滤来改进它们。与狭小的办公室和厨房空间不同,我们的实验发生在一个大型开放的城市火车站,那里有多个语义模糊的地方。我们的方法的成功表明,我们的新表示是一种健壮的方法,可以利用大量现有的gps拒绝环境的先验地图,避免在匹配点云或视觉特征时出现数据关联问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信