Temporal data analytics based on eigenmotif and shape space representations of time series

André Gensler, B. Sick, Jens Willkomm
{"title":"Temporal data analytics based on eigenmotif and shape space representations of time series","authors":"André Gensler, B. Sick, Jens Willkomm","doi":"10.1109/ChinaSIP.2014.6889345","DOIUrl":null,"url":null,"abstract":"For temporal data analytics it is essential to assess the similarity of time series numerically. For similarity measures, in turn, appropriate time series representation techniques are needed. We present and discuss two techniques for time series representation. Eigenspace representations are based on a principal component analysis of time series. Shape space representations are based on polynomial least-squares approximations. Both aim at capturing the essential characteristics of time series while abstracting from less significant information, e.g., noise. The similarity of time series can then be measured using a standard Euclidean distance in the eigenspace or the shape space, respectively. Experiments on a number of benchmark data sets for time series classification show that the measure based on a shape space representation outperforms some other linear (non-elastic) similarity measures-including a standard Euclidean measure applied to the raw time series, which is a standard approach in temporal data analytics-regarding classification accuracy and run-time.","PeriodicalId":248977,"journal":{"name":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ChinaSIP.2014.6889345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

For temporal data analytics it is essential to assess the similarity of time series numerically. For similarity measures, in turn, appropriate time series representation techniques are needed. We present and discuss two techniques for time series representation. Eigenspace representations are based on a principal component analysis of time series. Shape space representations are based on polynomial least-squares approximations. Both aim at capturing the essential characteristics of time series while abstracting from less significant information, e.g., noise. The similarity of time series can then be measured using a standard Euclidean distance in the eigenspace or the shape space, respectively. Experiments on a number of benchmark data sets for time series classification show that the measure based on a shape space representation outperforms some other linear (non-elastic) similarity measures-including a standard Euclidean measure applied to the raw time series, which is a standard approach in temporal data analytics-regarding classification accuracy and run-time.
基于时间序列特征基序和形状空间表示的时间数据分析
在时间数据分析中,对时间序列的相似性进行数值评估是十分必要的。而对于相似性度量,则需要适当的时间序列表示技术。我们提出并讨论了时间序列表示的两种技术。特征空间表示是基于时间序列的主成分分析。形状空间表示基于多项式最小二乘近似。两者都旨在捕捉时间序列的基本特征,同时从不太重要的信息中提取,例如噪声。然后可以分别使用特征空间或形状空间中的标准欧几里得距离来测量时间序列的相似性。在时间序列分类的许多基准数据集上进行的实验表明,基于形状空间表示的度量在分类精度和运行时间方面优于其他一些线性(非弹性)相似性度量,包括应用于原始时间序列的标准欧几里得度量,这是时间数据分析中的标准方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信