{"title":"Automatic instruction set extension and utilization for embedded processors","authors":"A. Peymandoust, L. Pozzi, P. Ienne, G. Micheli","doi":"10.1109/ASAP.2003.1212834","DOIUrl":null,"url":null,"abstract":"There is a growing demand for application-specific embedded processors in system-on-a-chip designs. Current tools and design methodologies often require designers to manually specialize the processor based on an application. Moreover, the use of the new complex instructions added to the processor is often left to designers' ingenuity. We present a solution that automatically groups dataflow operations in the application software as potential new complex instructions. The set of possible instructions is then automatically used for code generation combined with high-level arithmetic optimizations using symbolic algebra. Symbolic arithmetic manipulations provide a novel and effective method for instruction selection that is necessary due to the complexity of the automatically identified instructions. We have used our methodology to automatically add new instructions to Tensilica processors for a set of examples. Our results show that our tools improve designers productivity and efficiently specialize an embedded processor for the given application such that the execution time is greatly improved.","PeriodicalId":261592,"journal":{"name":"Proceedings IEEE International Conference on Application-Specific Systems, Architectures, and Processors. ASAP 2003","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"85","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Conference on Application-Specific Systems, Architectures, and Processors. ASAP 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2003.1212834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 85
Abstract
There is a growing demand for application-specific embedded processors in system-on-a-chip designs. Current tools and design methodologies often require designers to manually specialize the processor based on an application. Moreover, the use of the new complex instructions added to the processor is often left to designers' ingenuity. We present a solution that automatically groups dataflow operations in the application software as potential new complex instructions. The set of possible instructions is then automatically used for code generation combined with high-level arithmetic optimizations using symbolic algebra. Symbolic arithmetic manipulations provide a novel and effective method for instruction selection that is necessary due to the complexity of the automatically identified instructions. We have used our methodology to automatically add new instructions to Tensilica processors for a set of examples. Our results show that our tools improve designers productivity and efficiently specialize an embedded processor for the given application such that the execution time is greatly improved.