Toward a theory of validation of hybrid MinMax FuzzyNeuro systems

M. Beldjehem
{"title":"Toward a theory of validation of hybrid MinMax FuzzyNeuro systems","authors":"M. Beldjehem","doi":"10.1109/CIMSA.2008.4595831","DOIUrl":null,"url":null,"abstract":"The validation and verification (V&V) of hybrid fuzzyneuro (HFN) or hybrid neurofuzzy (HNF) systems becomes of increasing concern as these systems are fielded and embedded in the every day operations of medical diagnosis, pattern recognition, fuzzy control and other industries-particularly so when life-critical and environment-critical aspects are involved. We provide in this paper a V&V perspective on the nature of HFN components, an appropriate life-cycle, and applicable systematic formal testing approaches. We consider why HFN V&V may be both easier and harder than traditional means, and we conclude with a series of practical V&V guidelines. Validation of HFN systems brings us to a systematic study of value approximation performed during the inference phase. It is accepted that generalization capability is proportional to value approximation.","PeriodicalId":302812,"journal":{"name":"2008 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSA.2008.4595831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The validation and verification (V&V) of hybrid fuzzyneuro (HFN) or hybrid neurofuzzy (HNF) systems becomes of increasing concern as these systems are fielded and embedded in the every day operations of medical diagnosis, pattern recognition, fuzzy control and other industries-particularly so when life-critical and environment-critical aspects are involved. We provide in this paper a V&V perspective on the nature of HFN components, an appropriate life-cycle, and applicable systematic formal testing approaches. We consider why HFN V&V may be both easier and harder than traditional means, and we conclude with a series of practical V&V guidelines. Validation of HFN systems brings us to a systematic study of value approximation performed during the inference phase. It is accepted that generalization capability is proportional to value approximation.
一种混合MinMax模糊神经系统的验证理论
混合模糊神经(HFN)或混合神经模糊(HNF)系统的验证和验证(V&V)越来越受到关注,因为这些系统被应用于医疗诊断、模式识别、模糊控制和其他行业的日常操作中,特别是当涉及到生命和环境关键方面时。在本文中,我们提供了HFN组件性质的V&V观点,适当的生命周期,以及适用的系统正式测试方法。我们考虑了为什么HFN V&V可能比传统方法更容易和更困难,并总结了一系列实用的V&V指南。HFN系统的验证使我们能够系统地研究在推理阶段执行的值近似。一般认为泛化能力与逼近值成正比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信