Epileptic seizure detection for multi-channel EEG with deep convolutional neural network

Chulkyun Park, Gwangho Choi, Junkyung Kim, Sangdeok Kim, Tae-Joon Kim, Kyeongyuk Min, K. Jung, Jongwha Chong
{"title":"Epileptic seizure detection for multi-channel EEG with deep convolutional neural network","authors":"Chulkyun Park, Gwangho Choi, Junkyung Kim, Sangdeok Kim, Tae-Joon Kim, Kyeongyuk Min, K. Jung, Jongwha Chong","doi":"10.23919/ELINFOCOM.2018.8330671","DOIUrl":null,"url":null,"abstract":"A new epileptic seizure detection method based on deep convolutional network is proposed. The proposed network is designed for multi-channel EEG signals and considers spatio-temporal correlation, a feature in epileptic seizure detection, using 1D and 2D convolutional layers. 1D convolutional layer considers temporal evolution of the EEG signal of each channel and 2D convolutional layers considers spatial relationships between EEG channels. We make datasets for training and test by extracting the EEG segments from CHB-MIT EEG Scalp database and SNUH-HYU EEG database: the recordings of long-term EEG monitoring at Seoul National University Hospital and Children's Hospital Boston. Our model is trained and tested using the EEG segments with varying durations. We also investigate the effect of artifact elimination on epileptic seizure detection by applying a low-pass filter to the EEG signals. Our model achieves 90.5% prediction accuracy with SNUH-HYU EEG dataset.","PeriodicalId":413646,"journal":{"name":"2018 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ELINFOCOM.2018.8330671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

A new epileptic seizure detection method based on deep convolutional network is proposed. The proposed network is designed for multi-channel EEG signals and considers spatio-temporal correlation, a feature in epileptic seizure detection, using 1D and 2D convolutional layers. 1D convolutional layer considers temporal evolution of the EEG signal of each channel and 2D convolutional layers considers spatial relationships between EEG channels. We make datasets for training and test by extracting the EEG segments from CHB-MIT EEG Scalp database and SNUH-HYU EEG database: the recordings of long-term EEG monitoring at Seoul National University Hospital and Children's Hospital Boston. Our model is trained and tested using the EEG segments with varying durations. We also investigate the effect of artifact elimination on epileptic seizure detection by applying a low-pass filter to the EEG signals. Our model achieves 90.5% prediction accuracy with SNUH-HYU EEG dataset.
基于深度卷积神经网络的多通道脑电图癫痫发作检测
提出了一种新的基于深度卷积网络的癫痫发作检测方法。该网络是针对多通道脑电图信号设计的,并考虑了时空相关性,这是癫痫发作检测的一个特征,使用1D和2D卷积层。一维卷积层考虑各通道脑电信号的时间演化,二维卷积层考虑脑电信号通道间的空间关系。我们从CHB-MIT EEG头皮数据库和SNUH-HYU EEG数据库中提取EEG片段:首尔国立大学医院和波士顿儿童医院的长期EEG监测记录,制作训练和测试数据集。我们的模型使用不同持续时间的脑电图片段进行训练和测试。我们还通过对脑电图信号进行低通滤波,研究了伪影消除对癫痫发作检测的影响。该模型对snh - hyu脑电数据集的预测准确率达到90.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信