Small-sample distribution estimation over sticky channels

Farzad Farnoud, O. Milenkovic, N. Santhanam
{"title":"Small-sample distribution estimation over sticky channels","authors":"Farzad Farnoud, O. Milenkovic, N. Santhanam","doi":"10.1109/ISIT.2009.5206020","DOIUrl":null,"url":null,"abstract":"We consider the problem of estimating unknown source distributions based on a small number of possibly erroneous observations. Errors are modeled as arising from sticky channels, which introduce repetitions of transmitted source symbols. Both the problems of estimating the distribution for known and unknown channel parameters are considered. We propose three heuristic algorithms and a method based on Expectation-Maximization for solving the problem. These algorithms represent a combination of iterative optimization techniques and Good-Turing estimators.","PeriodicalId":412925,"journal":{"name":"2009 IEEE International Symposium on Information Theory","volume":"251 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2009.5206020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We consider the problem of estimating unknown source distributions based on a small number of possibly erroneous observations. Errors are modeled as arising from sticky channels, which introduce repetitions of transmitted source symbols. Both the problems of estimating the distribution for known and unknown channel parameters are considered. We propose three heuristic algorithms and a method based on Expectation-Maximization for solving the problem. These algorithms represent a combination of iterative optimization techniques and Good-Turing estimators.
粘性通道上的小样本分布估计
我们考虑基于少量可能错误的观测估计未知源分布的问题。误差被建模为由粘性信道引起的,粘性信道引入了发射源符号的重复。同时考虑了已知和未知信道参数分布的估计问题。我们提出了三种启发式算法和一种基于期望最大化的方法来解决这一问题。这些算法是迭代优化技术和Good-Turing估计器的结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信