Neural Network Controllers in Chemical Technologies

Karol Kiš, Martin Klauco, A. Mészáros
{"title":"Neural Network Controllers in Chemical Technologies","authors":"Karol Kiš, Martin Klauco, A. Mészáros","doi":"10.1109/SoSE50414.2020.9130425","DOIUrl":null,"url":null,"abstract":"Chemical technologies benefit greatly from optimization-based control strategies. This paper addressed the problem of substituting the optimization based controller with a neural network (NN). The NN-based controller offers several advantages, first it can be derived in an analytical form and second, it can make the closed-loop implementation tunable. It is not possible to incorporate these aspects into optimizationbased controller easily.The contribution is also to address the problem of the quality of the neural net, that approximates the control law. We show, which activation functions and structure yield the best approximation.","PeriodicalId":121664,"journal":{"name":"2020 IEEE 15th International Conference of System of Systems Engineering (SoSE)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 15th International Conference of System of Systems Engineering (SoSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SoSE50414.2020.9130425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Chemical technologies benefit greatly from optimization-based control strategies. This paper addressed the problem of substituting the optimization based controller with a neural network (NN). The NN-based controller offers several advantages, first it can be derived in an analytical form and second, it can make the closed-loop implementation tunable. It is not possible to incorporate these aspects into optimizationbased controller easily.The contribution is also to address the problem of the quality of the neural net, that approximates the control law. We show, which activation functions and structure yield the best approximation.
化学技术中的神经网络控制器
化工技术从基于优化的控制策略中受益匪浅。研究了用神经网络(NN)代替基于优化的控制器的问题。基于神经网络的控制器有几个优点,首先,它可以以解析形式推导,其次,它可以使闭环实现可调。将这些方面轻易地整合到基于优化的控制器中是不可能的。其贡献还在于解决神经网络的质量问题,即近似控制律的问题。我们证明了哪种激活函数和结构产生最佳近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信