FastAAA: A fast rational-function fitter

A. Hochman
{"title":"FastAAA: A fast rational-function fitter","authors":"A. Hochman","doi":"10.1109/EPEPS.2017.8329756","DOIUrl":null,"url":null,"abstract":"FastAAA is an algorithm for fitting rational-functions to a set of N data samples. In each step of the algorithm, it computes an order n fit via a fast, O(Nn), update of the previous order n − 1 fit. The algorithm stops at the first order that yields an acceptable error. The errors of the fits of orders 1… n, are evaluated in O(Nn2) operations. If the data can be represented exactly with n poles, the algorithm is guaranteed to stop after n iterations (in exact arithmetic). It is possible to fit p rational-functions, sharing the same set of poles, to p sets of data, in O(pNn2) operations. The stability of the poles and Hermitian symmetry of the fit can be guaranteed.","PeriodicalId":397179,"journal":{"name":"2017 IEEE 26th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 26th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS.2017.8329756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

FastAAA is an algorithm for fitting rational-functions to a set of N data samples. In each step of the algorithm, it computes an order n fit via a fast, O(Nn), update of the previous order n − 1 fit. The algorithm stops at the first order that yields an acceptable error. The errors of the fits of orders 1… n, are evaluated in O(Nn2) operations. If the data can be represented exactly with n poles, the algorithm is guaranteed to stop after n iterations (in exact arithmetic). It is possible to fit p rational-functions, sharing the same set of poles, to p sets of data, in O(pNn2) operations. The stability of the poles and Hermitian symmetry of the fit can be guaranteed.
FastAAA:一个快速的有理函数筛选器
FastAAA是一种对N个数据样本进行有理函数拟合的算法。在算法的每一步中,它通过对前一个n−1阶拟合的快速更新(O(Nn))来计算一个n阶拟合。算法在产生可接受误差的一阶停止。在O(Nn2)次运算中求出1…n阶拟合的误差。如果数据可以用n个极点精确地表示,则保证算法在n次迭代后停止(以精确算术方式)。在O(pNn2)次运算中,可以拟合p个具有相同极点集的有理函数到p个数据集。可以保证极点的稳定性和配合的厄米对称。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信