A. Riccio, S. Saputo, M. Zarrelli, A. Sellitto, Carmine Napolitano, V. Acanfora
{"title":"Shape Memory Alloy-based actuator: experimental and modelling","authors":"A. Riccio, S. Saputo, M. Zarrelli, A. Sellitto, Carmine Napolitano, V. Acanfora","doi":"10.1109/MetroAeroSpace51421.2021.9511770","DOIUrl":null,"url":null,"abstract":"In this work, an experimental characterization of Shape Memory Alloy (SMA) springs was carried-out to assess the efficiency of simple analytical procedure for a preliminary design of Shape Memory Alloy-based spring actuators. Two static analytical models were considered recursively, respectively to determine SMA material properties by accurate tensile experimental test and to identify the optimized geometrical characteristic of SMA-bias spring-based unit for a specific feasible mini-actuator for vehicle moveable part. The final extra-force and displacement of the actuator was validated at different temperature above transformation temperature to assess the limitation of the implemented procedure.","PeriodicalId":236783,"journal":{"name":"2021 IEEE 8th International Workshop on Metrology for AeroSpace (MetroAeroSpace)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 8th International Workshop on Metrology for AeroSpace (MetroAeroSpace)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroAeroSpace51421.2021.9511770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this work, an experimental characterization of Shape Memory Alloy (SMA) springs was carried-out to assess the efficiency of simple analytical procedure for a preliminary design of Shape Memory Alloy-based spring actuators. Two static analytical models were considered recursively, respectively to determine SMA material properties by accurate tensile experimental test and to identify the optimized geometrical characteristic of SMA-bias spring-based unit for a specific feasible mini-actuator for vehicle moveable part. The final extra-force and displacement of the actuator was validated at different temperature above transformation temperature to assess the limitation of the implemented procedure.