{"title":"Shared memory heterogeneous computation on PCIe-supported platforms","authors":"S. Shukla, Yang Yang, L. Bhuyan, P. Brisk","doi":"10.1109/FPL.2013.6645580","DOIUrl":null,"url":null,"abstract":"Domain-disparity between CPU and Hardware Accelerators(HA) leads to CPU under-utilization and inter-domain data copy overheads. By exposing HA memory to OS and host MMU, these overheads can be eliminated. In this paper, we present a shared virtual memory real system design for PCIe-based HAs to enable parallel heterogeneous execution in CPU and HAs without driver overheads. We extend Linux with a custom memory manager and scheduler to manage HA memory and application-cores respectively. Our FPGA-based multi-application logic design supports simultaneous execution of multiple heterogeneous applications. We show the advantages of heterogeneous execution and analyze how our design reduces OS overhead.","PeriodicalId":200435,"journal":{"name":"2013 23rd International Conference on Field programmable Logic and Applications","volume":"437 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 23rd International Conference on Field programmable Logic and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL.2013.6645580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Domain-disparity between CPU and Hardware Accelerators(HA) leads to CPU under-utilization and inter-domain data copy overheads. By exposing HA memory to OS and host MMU, these overheads can be eliminated. In this paper, we present a shared virtual memory real system design for PCIe-based HAs to enable parallel heterogeneous execution in CPU and HAs without driver overheads. We extend Linux with a custom memory manager and scheduler to manage HA memory and application-cores respectively. Our FPGA-based multi-application logic design supports simultaneous execution of multiple heterogeneous applications. We show the advantages of heterogeneous execution and analyze how our design reduces OS overhead.