Low-Clock-Power Digital Standard Cell IPs for High-Performance Graphics/AI Processors in 10nm CMOS

S. Hsu, A. Agarwal, S. Realov, M. Anders, Gregory K. Chen, Monodeep Kar, Raghavan Kumar, H. Sumbul, Phil C. Knag, Himanshu Kaul, Vikram B. Suresh, S. Mathew, Iqbal Rajwani, Satish Damaraju, R. Krishnamurthy, V. De
{"title":"Low-Clock-Power Digital Standard Cell IPs for High-Performance Graphics/AI Processors in 10nm CMOS","authors":"S. Hsu, A. Agarwal, S. Realov, M. Anders, Gregory K. Chen, Monodeep Kar, Raghavan Kumar, H. Sumbul, Phil C. Knag, Himanshu Kaul, Vikram B. Suresh, S. Mathew, Iqbal Rajwani, Satish Damaraju, R. Krishnamurthy, V. De","doi":"10.1109/VLSICircuits18222.2020.9163007","DOIUrl":null,"url":null,"abstract":"Low-clock-power digital standard cell IPs in 10nm CMOS, featuring low-power shared-clock (LPSC) flip-flops (FFs), LPSC back-to-back (B2B) FFs, and pass-gate (PG) integrated clock gates (ICGs), achieve up to 14%, 45%, and 14% measured clock energy improvements, respectively, by reducing the number of clocked devices over state-of-the-art conventional transmission-gate (TG) FF and AND ICG circuits. The LPSC FF achieves a mean worst-case black-hole-time (BHT) improvement of 17ps, while the PG ICG achieves a mean enable/disable setup time improvement of 16ps/15ps, compared to conventional circuits measured at 650mV, 25°C. Power analysis of a graphics processor block with these optimized IPs results in an overall 6% clock power reduction without frequency impact.","PeriodicalId":252787,"journal":{"name":"2020 IEEE Symposium on VLSI Circuits","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSICircuits18222.2020.9163007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Low-clock-power digital standard cell IPs in 10nm CMOS, featuring low-power shared-clock (LPSC) flip-flops (FFs), LPSC back-to-back (B2B) FFs, and pass-gate (PG) integrated clock gates (ICGs), achieve up to 14%, 45%, and 14% measured clock energy improvements, respectively, by reducing the number of clocked devices over state-of-the-art conventional transmission-gate (TG) FF and AND ICG circuits. The LPSC FF achieves a mean worst-case black-hole-time (BHT) improvement of 17ps, while the PG ICG achieves a mean enable/disable setup time improvement of 16ps/15ps, compared to conventional circuits measured at 650mV, 25°C. Power analysis of a graphics processor block with these optimized IPs results in an overall 6% clock power reduction without frequency impact.
用于10nm CMOS的高性能图形/AI处理器的低时钟功耗数字标准单元ip
10nm CMOS中的低时钟功耗数字标准单元ip,具有低功耗共享时钟(LPSC)触发器(FF), LPSC背靠背(B2B) FF和通闸(PG)集成时钟门(ICG),通过减少最先进的传统传输门(TG) FF和and ICG电路上的时钟器件数量,分别实现了高达14%,45%和14%的测量时钟能量改进。LPSC FF实现了平均最坏情况黑洞时间(BHT)改进17ps,而PG ICG实现了平均使能/禁用设置时间改进16ps/15ps,与传统电路在650mV, 25°C下测量相比。使用这些优化的ip对图形处理器块进行功耗分析,可以在不影响频率的情况下降低6%的时钟功耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信