Front-end design for Ka band mm-Wave radar

A. K. Keskin, Mustafa Dagcan Senturk, S. Demirel, A. Kizilay, A. S. Turk
{"title":"Front-end design for Ka band mm-Wave radar","authors":"A. K. Keskin, Mustafa Dagcan Senturk, S. Demirel, A. Kizilay, A. S. Turk","doi":"10.1109/IRS.2016.7497267","DOIUrl":null,"url":null,"abstract":"In this paper front-end design for a Ka band milimeter wave (MMW) radar which consists of an antenna, a low noise amplifier (LNA) and a band pass filter is presented. The operation frequency of the designed system is between 24-25 GHz in Ka band. A high gain axially displaced elliptical (ADE) dual reflector antenna is employed on the antenna structure. ADE sub-reflector with 5 cm diameter is illuminated by a feeder horn and a main reflector 30 cm diameter parabola focuses incoming waves from the ADE sub-reflector. According to the simulation results narrow half power beam width (HPBW=30) and high gain (G=35 dBi) are obtained with good efficiency (%58). An HJ-FET that has low noise figure (NF<;1 dB) and high gain (>13 dB) is utilized to design a LNA. Double transistors are connected as cascaded to achieve higher transducer gain (Gt>19 dB). Matching circuits and feeder resonators are designed by microstrip lines to obtain low input and output VSWR (Vin<;2.1, Vout<;2.1). A microstrip band pass filter (BPF) is designed to receive required signals and to suppress other bands. The BPF is formed by combination of a radial stub low pass filter (LPF) and a short stub high pass filter. Low insertion loss (S21>-2.5dB) and low return loss (S11<;-15 dB) are aimed to take signal as lossless as at pass band. The simulated designs are manufactured and measured. It is seen that there are good agreements between measurement and simulation results.","PeriodicalId":346680,"journal":{"name":"2016 17th International Radar Symposium (IRS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Radar Symposium (IRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRS.2016.7497267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper front-end design for a Ka band milimeter wave (MMW) radar which consists of an antenna, a low noise amplifier (LNA) and a band pass filter is presented. The operation frequency of the designed system is between 24-25 GHz in Ka band. A high gain axially displaced elliptical (ADE) dual reflector antenna is employed on the antenna structure. ADE sub-reflector with 5 cm diameter is illuminated by a feeder horn and a main reflector 30 cm diameter parabola focuses incoming waves from the ADE sub-reflector. According to the simulation results narrow half power beam width (HPBW=30) and high gain (G=35 dBi) are obtained with good efficiency (%58). An HJ-FET that has low noise figure (NF<;1 dB) and high gain (>13 dB) is utilized to design a LNA. Double transistors are connected as cascaded to achieve higher transducer gain (Gt>19 dB). Matching circuits and feeder resonators are designed by microstrip lines to obtain low input and output VSWR (Vin<;2.1, Vout<;2.1). A microstrip band pass filter (BPF) is designed to receive required signals and to suppress other bands. The BPF is formed by combination of a radial stub low pass filter (LPF) and a short stub high pass filter. Low insertion loss (S21>-2.5dB) and low return loss (S11<;-15 dB) are aimed to take signal as lossless as at pass band. The simulated designs are manufactured and measured. It is seen that there are good agreements between measurement and simulation results.
Ka波段毫米波雷达前端设计
介绍了一种由天线、低噪声放大器和带通滤波器组成的Ka波段毫米波雷达的前端设计。设计的系统工作频率在Ka频段24- 25ghz之间。天线结构采用高增益轴向位移椭圆(ADE)双反射面天线。直径为5 cm的ADE副反射面由馈线喇叭照射,主反射面直径为30 cm的抛物线聚焦来自ADE副反射面的入射波。仿真结果表明,该方法获得了较窄的半功率波束宽度(HPBW=30)和高增益(G=35 dBi),效率为%58。采用低噪声系数(NF13 dB)的HJ-FET设计LNA。双晶体管级联连接,实现更高的换能器增益(Gt>19 dB)。通过微带线设计匹配电路和馈线谐振器,实现低输入输出驻波比(Vin-2.5dB)和低回波损耗(S11<;-15 dB),使信号达到通频带无损。对仿真设计进行了制作和测量。实验结果与仿真结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信