Comparative STEREO-LID (Spatio-TEmporally REsolved Optical Laser-Induced Damage) studies of critical defect distributions in IBS, ALD, and electron-beam coated dielectric films
Yejia Xu, A. Khabbazi, T. Day, A. Brown, L. Emmert, J. Talghader, E. Field, D. Kletecka, J. Bellum, D. Patel, C. Menoni, W. Rudolph
{"title":"Comparative STEREO-LID (Spatio-TEmporally REsolved Optical Laser-Induced Damage) studies of critical defect distributions in IBS, ALD, and electron-beam coated dielectric films","authors":"Yejia Xu, A. Khabbazi, T. Day, A. Brown, L. Emmert, J. Talghader, E. Field, D. Kletecka, J. Bellum, D. Patel, C. Menoni, W. Rudolph","doi":"10.1117/12.2196548","DOIUrl":null,"url":null,"abstract":"The laser damage behavior of high quality coatings under nanosecond pulse illumination is controlled by statistically distributed defects, whose physical nature and defect mechanisms are still largely unknown. Defect densities are often retrieved by modeling the fluence dependence of the damage probability measured by traditional damage test (TDT) methods, based on ‘damage’ or ‘no damage’ observations. STEREO-LID (Spatio-TEmporally REsolved Optical LaserInduced Damage) allows the determination of the damage fluence (and intensity) in a single test by identifying the initiation of damage both temporally and spatially. The advantages of this test method over the TDT are discussed. In particular, its ability to retrieve detailed defect distribution functions is demonstrated by comparison of results from HfO2 films prepared by ion-assisted electron beam evaporation, ion-beam sputtering, and atomic layer deposition.","PeriodicalId":204978,"journal":{"name":"SPIE Laser Damage","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Laser Damage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2196548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The laser damage behavior of high quality coatings under nanosecond pulse illumination is controlled by statistically distributed defects, whose physical nature and defect mechanisms are still largely unknown. Defect densities are often retrieved by modeling the fluence dependence of the damage probability measured by traditional damage test (TDT) methods, based on ‘damage’ or ‘no damage’ observations. STEREO-LID (Spatio-TEmporally REsolved Optical LaserInduced Damage) allows the determination of the damage fluence (and intensity) in a single test by identifying the initiation of damage both temporally and spatially. The advantages of this test method over the TDT are discussed. In particular, its ability to retrieve detailed defect distribution functions is demonstrated by comparison of results from HfO2 films prepared by ion-assisted electron beam evaporation, ion-beam sputtering, and atomic layer deposition.