Fine-Tuning BERT for Sentiment Analysis of Vietnamese Reviews

Quoc Thai Nguyen, Thoaī Nguyen, N. H. Luong, Quoc Hung Ngo
{"title":"Fine-Tuning BERT for Sentiment Analysis of Vietnamese Reviews","authors":"Quoc Thai Nguyen, Thoaī Nguyen, N. H. Luong, Quoc Hung Ngo","doi":"10.1109/NICS51282.2020.9335899","DOIUrl":null,"url":null,"abstract":"Sentiment analysis is an important task in the field of Nature Language Processing (NLP), in which users' feedback data on a specific issue are evaluated and analyzed. Many deep learning models have been proposed to tackle this task, including the recently-introduced Bidirectional Encoder Representations from Transformers (BERT) model. In this paper, we experiment with two BERT fine-tuning methods for the sentiment analysis task on datasets of Vietnamese reviews: 1) a method that uses only the [CLS] token as the input for an attached feed-forward neural network, and 2) another method in which all BERT output vectors are used as the input for classification. Experimental results on two datasets show that models using BERT slightly outperform other models using GloVe and FastText. Also, regarding the datasets employed in this study, our proposed BERT fine-tuning method produces a model with better performance than the original BERT fine-tuning method.","PeriodicalId":308944,"journal":{"name":"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS51282.2020.9335899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Sentiment analysis is an important task in the field of Nature Language Processing (NLP), in which users' feedback data on a specific issue are evaluated and analyzed. Many deep learning models have been proposed to tackle this task, including the recently-introduced Bidirectional Encoder Representations from Transformers (BERT) model. In this paper, we experiment with two BERT fine-tuning methods for the sentiment analysis task on datasets of Vietnamese reviews: 1) a method that uses only the [CLS] token as the input for an attached feed-forward neural network, and 2) another method in which all BERT output vectors are used as the input for classification. Experimental results on two datasets show that models using BERT slightly outperform other models using GloVe and FastText. Also, regarding the datasets employed in this study, our proposed BERT fine-tuning method produces a model with better performance than the original BERT fine-tuning method.
基于BERT的越南语评论情感分析
情感分析是自然语言处理(NLP)领域的一项重要任务,它对用户对特定问题的反馈数据进行评估和分析。许多深度学习模型已经被提出来解决这个问题,包括最近引入的双向编码器表示从变形金刚(BERT)模型。在本文中,我们对越南语评论数据集的情感分析任务进行了两种BERT微调方法的实验:1)仅使用[CLS]令牌作为附加前馈神经网络的输入的方法,以及2)另一种使用所有BERT输出向量作为分类输入的方法。在两个数据集上的实验结果表明,使用BERT的模型略优于使用GloVe和FastText的模型。此外,对于本研究使用的数据集,我们提出的BERT微调方法产生的模型比原始BERT微调方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信