Discrete-Time Output Trajectory Tracking for Induction Motor using a Neural Observer

A. Alanis, E. Sánchez, A. Loukianov
{"title":"Discrete-Time Output Trajectory Tracking for Induction Motor using a Neural Observer","authors":"A. Alanis, E. Sánchez, A. Loukianov","doi":"10.1109/ISIC.2007.4450951","DOIUrl":null,"url":null,"abstract":"This paper presents the design of an adaptive controller based on the block control technique, and a new neural observer for a class of MIMO discrete-time nonlinear systems. The observer is based on a recurrent high-order neural network (RHONN), which estimates the state vectors of the unknown plant dynamics. The learning algorithm for the RHONN is based on an extended Kalman filter (EKF). This paper also includes the respective stability analysis, using the Lyapunov approach, for the whole system, which includes the nonlinear plant, the neural observer trained with the EKF and the block controller. Applicability of the proposed scheme is illustrated via simulation for a discrete-time nonlinear model of an electric induction motor.","PeriodicalId":184867,"journal":{"name":"2007 IEEE 22nd International Symposium on Intelligent Control","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 22nd International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2007.4450951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper presents the design of an adaptive controller based on the block control technique, and a new neural observer for a class of MIMO discrete-time nonlinear systems. The observer is based on a recurrent high-order neural network (RHONN), which estimates the state vectors of the unknown plant dynamics. The learning algorithm for the RHONN is based on an extended Kalman filter (EKF). This paper also includes the respective stability analysis, using the Lyapunov approach, for the whole system, which includes the nonlinear plant, the neural observer trained with the EKF and the block controller. Applicability of the proposed scheme is illustrated via simulation for a discrete-time nonlinear model of an electric induction motor.
基于神经观测器的异步电机离散输出轨迹跟踪
提出了一种基于块控制技术的自适应控制器的设计,以及一类离散非线性多输入多输出系统的神经观测器的设计。观测器基于循环高阶神经网络(RHONN),该网络估计未知植物动态的状态向量。RHONN的学习算法基于扩展卡尔曼滤波(EKF)。本文还采用李雅普诺夫方法对整个系统分别进行了稳定性分析,该系统包括非线性对象、用EKF训练的神经观测器和块控制器。通过对异步电动机离散非线性模型的仿真,说明了该方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信