The statistical longest path problem and its application to delay analysis of logical circuits

TAU '02 Pub Date : 2002-12-02 DOI:10.1145/589411.589440
Ei Ando, M. Yamashita, Toshio Nakata, Y. Matsunaga
{"title":"The statistical longest path problem and its application to delay analysis of logical circuits","authors":"Ei Ando, M. Yamashita, Toshio Nakata, Y. Matsunaga","doi":"10.1145/589411.589440","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm for estimating, in the sense below, the length of a longest path of a given directed acyclic graph (DAG) whose edge lengths are given as random variables with normal distributions. Let <i>F</i>(<i>x</i>) be the distribution function of the length of a longest path of a given DAG. The algorithm computes a normal distribution function &Ftilde;(<i>x</i>) such that ˜F(<i>x</i>) 〈 <i>F</i>(<i>x</i>) if <i>F</i>(<i>x</i>) 〉 <i>a</i>, given a constant <i>a</i> (0.5 〈 <i>a</i> 〈 1.0). We conduct two experiments to demonstrate the accuracy of &Ftilde;(<i>x</i>).","PeriodicalId":338381,"journal":{"name":"TAU '02","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TAU '02","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/589411.589440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper presents an algorithm for estimating, in the sense below, the length of a longest path of a given directed acyclic graph (DAG) whose edge lengths are given as random variables with normal distributions. Let F(x) be the distribution function of the length of a longest path of a given DAG. The algorithm computes a normal distribution function &Ftilde;(x) such that ˜F(x) 〈 F(x) if F(x) 〉 a, given a constant a (0.5 〈 a 〈 1.0). We conduct two experiments to demonstrate the accuracy of &Ftilde;(x).
统计最长路径问题及其在逻辑电路延迟分析中的应用
本文给出了一种估计给定有向无环图(DAG)的最长路径长度的算法,该有向无环图的边长度是正态分布的随机变量。设F(x)为给定DAG的最长路径长度的分布函数。该算法计算一个正态分布函数&Ftilde;(x),如果给定常数a (0.5 < a < 1.0), F(x) > a,则F(x) < F(x)。我们进行了两个实验来证明&Ftilde;(x)的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信