{"title":"Application of BP neural network in the prediction of consolidation coefficient","authors":"Hong-Hu Zhu, Jianhui Fu, Fei Dai","doi":"10.1109/ACTEA.2009.5227942","DOIUrl":null,"url":null,"abstract":"The application of artificial neural network (ANN) in the discipline of geotechnical engineering is discussed in this paper. A multi-layer error back-propagation (BP) feed-forward neural network model was proposed to predict an important geotechnical parameter, namely the consolidation coefficient. The conventional methods for predicting consolidation coefficient is briefly introduced. Based on the results of laboratory consolidation tests, the BP model was trained and used to determine the consolidation coefficient. The predicted values were compared to those determined by graphical methods. It is proved that the BP neural network approach yielded similar results compared with other methods.","PeriodicalId":308909,"journal":{"name":"2009 International Conference on Advances in Computational Tools for Engineering Applications","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Advances in Computational Tools for Engineering Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACTEA.2009.5227942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The application of artificial neural network (ANN) in the discipline of geotechnical engineering is discussed in this paper. A multi-layer error back-propagation (BP) feed-forward neural network model was proposed to predict an important geotechnical parameter, namely the consolidation coefficient. The conventional methods for predicting consolidation coefficient is briefly introduced. Based on the results of laboratory consolidation tests, the BP model was trained and used to determine the consolidation coefficient. The predicted values were compared to those determined by graphical methods. It is proved that the BP neural network approach yielded similar results compared with other methods.