{"title":"FPGA Implementation of a Canonical Signed Digit Multiplier-less based FFT Processor for Wireless Communication Applications","authors":"Mahmud Benhamid, Masuri Othman","doi":"10.1109/SMELEC.2006.380712","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel fully parallel FFT architecture based on canonical signed digit (CSD) multiplier-less targeting wireless communication applications, such as IEEE802.15.3a wireless personal area network (WPAN) baseband. The proposed architecture has the advantages of high throughput, less latency, and smaller area. The multiplier-less architecture uses shift- and-add operations to realize the complex multiplier and uses the CSD to optimize these operations. The design has been coded in Verilog HDL targeting Xilinx Virtex-II FPGA series. It is fully implemented and tested on real hardware using Virtex-II FG456 prototype board. Based on this architecture, the implementation of 8-points FFT on Virtex-II can run at a maximum clock frequency of about 400 MHz which lead to about 3.2 GS/s throughput with a latency of 6 clock cycles using 16,580 equivalent gates. Comparison with a conventional parallel architecture design of the same size can run only at a maximum clock frequency of 220 MHz or 1.76 GS/s throughput with a latency of 12 clock cycles using 77,418 equivalent gates for the design. The resulting throughput increases by about 82% while the equivalent gates and latency decrease by about 79% and 50% respectively.","PeriodicalId":136703,"journal":{"name":"2006 IEEE International Conference on Semiconductor Electronics","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Semiconductor Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2006.380712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
This paper proposes a novel fully parallel FFT architecture based on canonical signed digit (CSD) multiplier-less targeting wireless communication applications, such as IEEE802.15.3a wireless personal area network (WPAN) baseband. The proposed architecture has the advantages of high throughput, less latency, and smaller area. The multiplier-less architecture uses shift- and-add operations to realize the complex multiplier and uses the CSD to optimize these operations. The design has been coded in Verilog HDL targeting Xilinx Virtex-II FPGA series. It is fully implemented and tested on real hardware using Virtex-II FG456 prototype board. Based on this architecture, the implementation of 8-points FFT on Virtex-II can run at a maximum clock frequency of about 400 MHz which lead to about 3.2 GS/s throughput with a latency of 6 clock cycles using 16,580 equivalent gates. Comparison with a conventional parallel architecture design of the same size can run only at a maximum clock frequency of 220 MHz or 1.76 GS/s throughput with a latency of 12 clock cycles using 77,418 equivalent gates for the design. The resulting throughput increases by about 82% while the equivalent gates and latency decrease by about 79% and 50% respectively.