PCA summarization for audio song identification using Gaussian Mixture models

V. Panagiotou, N. Mitianoudis
{"title":"PCA summarization for audio song identification using Gaussian Mixture models","authors":"V. Panagiotou, N. Mitianoudis","doi":"10.1109/ICDSP.2013.6622803","DOIUrl":null,"url":null,"abstract":"In an audio fingerprinting system, the song identification task should be performed within a few seconds. To address the need for fast and robust song identification system, we design fingerprints based on Gaussian Mixture Modeling (GMM) of delta Mel-frequency cepstrum coefficients (ΔMFCC) or delta chroma features (Δchroma). In order to summarize the extracted features over time, a novel implementation of Principal Component Analysis (PCA) is introduced. Experimental evaluations performed on a database of 10000 songs confirm that the proposed PCA summarization technique provides a significant increase in speed in the system's query time. Furthermore, the fingerprints prove to be quite robust against various common distortions, while by using non-distorted test song segments of 10 seconds, the system achieves high identification rates.","PeriodicalId":180360,"journal":{"name":"2013 18th International Conference on Digital Signal Processing (DSP)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 18th International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2013.6622803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

In an audio fingerprinting system, the song identification task should be performed within a few seconds. To address the need for fast and robust song identification system, we design fingerprints based on Gaussian Mixture Modeling (GMM) of delta Mel-frequency cepstrum coefficients (ΔMFCC) or delta chroma features (Δchroma). In order to summarize the extracted features over time, a novel implementation of Principal Component Analysis (PCA) is introduced. Experimental evaluations performed on a database of 10000 songs confirm that the proposed PCA summarization technique provides a significant increase in speed in the system's query time. Furthermore, the fingerprints prove to be quite robust against various common distortions, while by using non-distorted test song segments of 10 seconds, the system achieves high identification rates.
基于高斯混合模型的音频歌曲识别主成分分析
在音频指纹识别系统中,歌曲识别任务应在几秒钟内完成。为了满足快速和鲁棒的歌曲识别系统的需求,我们设计了基于mel频率倒谱系数(ΔMFCC)或色度特征(Δchroma)的高斯混合建模(GMM)的指纹。为了总结提取的特征随时间的变化,引入了一种新的主成分分析(PCA)实现。在10000首歌曲的数据库上进行的实验评估证实,所提出的PCA摘要技术在系统查询时间上提供了显着的速度提高。此外,指纹被证明对各种常见的扭曲具有很强的鲁棒性,而通过使用10秒的非扭曲测试歌曲片段,系统实现了很高的识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信