Salient Moving Object Detection Using Stochastic Approach Filtering

Peng Tang, Lin Gao, Zhifang Liu
{"title":"Salient Moving Object Detection Using Stochastic Approach Filtering","authors":"Peng Tang, Lin Gao, Zhifang Liu","doi":"10.1109/ICIG.2007.166","DOIUrl":null,"url":null,"abstract":"Background modeling techniques are important for object detection and tracking in video surveillance. Traditional background subtraction approaches are suffered from problems, such as persistent dynamic backgrounds, quick illumination changes, occlusions, noise etc. In this paper, we address the problem of detection and localization of moving objects in a video stream without apperception of background statistics. Three major contributions are presented. First, introducing the Monte Carlo importance sampling techniques greatly reduce the computation complexity while compromise the expected accuracy. Second, the robust salient motion is considered when resampling the feature points by removing those who do not move in a relative constant velocity. Finally, the proposed spatial kinetic mixture of Gaussian model (SKMGM) enforced spatial consistency. Promising results demonstrate the potentials of the proposed framework.","PeriodicalId":367106,"journal":{"name":"Fourth International Conference on Image and Graphics (ICIG 2007)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on Image and Graphics (ICIG 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2007.166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Background modeling techniques are important for object detection and tracking in video surveillance. Traditional background subtraction approaches are suffered from problems, such as persistent dynamic backgrounds, quick illumination changes, occlusions, noise etc. In this paper, we address the problem of detection and localization of moving objects in a video stream without apperception of background statistics. Three major contributions are presented. First, introducing the Monte Carlo importance sampling techniques greatly reduce the computation complexity while compromise the expected accuracy. Second, the robust salient motion is considered when resampling the feature points by removing those who do not move in a relative constant velocity. Finally, the proposed spatial kinetic mixture of Gaussian model (SKMGM) enforced spatial consistency. Promising results demonstrate the potentials of the proposed framework.
基于随机滤波的显著运动目标检测
背景建模技术是视频监控中目标检测和跟踪的重要手段。传统的背景减除方法存在背景持续动态、光照变化快、遮挡、噪声等问题。在本文中,我们解决了在没有背景统计统觉的情况下视频流中运动物体的检测和定位问题。提出了三个主要贡献。首先,引入蒙特卡罗重要性采样技术,在降低预期精度的同时大大降低了计算复杂度。其次,通过去除那些不以相对恒定速度移动的特征点,在重新采样特征点时考虑鲁棒显著运动。最后,提出的空间动力学混合高斯模型(SKMGM)加强了空间一致性。令人鼓舞的结果证明了所提出框架的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信