Aakash Soni, Xiaoting Li, Jean-Luc Scharbarg, C. Fraboul
{"title":"Work in progress paper: pessimism analysis of network calculus approach on AFDX networks","authors":"Aakash Soni, Xiaoting Li, Jean-Luc Scharbarg, C. Fraboul","doi":"10.1109/SIES.2017.7993380","DOIUrl":null,"url":null,"abstract":"Worst-case delay analysis of real-time networks is mandatory, since distributed real-time applications require bounded end-to-end delays. Switched Ethernet technologies have become popular solutions in the context of real-time systems. Several approaches, based on Network Calculus, trajectories, ..., have been proposed for the worst-case analysis of such technologies. They compute pessimistic upper bounds of end-toend delays. Since this pessimism leads to an over-dimensioning of the network, it is important to quantify the pessimism of the computed upper bounds. In this paper, we propose such a pessimism analysis, based on Network Calculus. In a first step we focus on avionics switched Ethernet network (AFDX) with Fixed Priority/First In First Out (FP/FIFO) scheduling.","PeriodicalId":262681,"journal":{"name":"2017 12th IEEE International Symposium on Industrial Embedded Systems (SIES)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th IEEE International Symposium on Industrial Embedded Systems (SIES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIES.2017.7993380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Worst-case delay analysis of real-time networks is mandatory, since distributed real-time applications require bounded end-to-end delays. Switched Ethernet technologies have become popular solutions in the context of real-time systems. Several approaches, based on Network Calculus, trajectories, ..., have been proposed for the worst-case analysis of such technologies. They compute pessimistic upper bounds of end-toend delays. Since this pessimism leads to an over-dimensioning of the network, it is important to quantify the pessimism of the computed upper bounds. In this paper, we propose such a pessimism analysis, based on Network Calculus. In a first step we focus on avionics switched Ethernet network (AFDX) with Fixed Priority/First In First Out (FP/FIFO) scheduling.