F. Pancher, Vanessa Vargas, P. Ramos, R. P. Bastos, David César Ardiles Saravia, R. Velazco
{"title":"Nanosatellite On-Board Computer including a Many-Core Processor","authors":"F. Pancher, Vanessa Vargas, P. Ramos, R. P. Bastos, David César Ardiles Saravia, R. Velazco","doi":"10.1109/LATS53581.2021.9651773","DOIUrl":null,"url":null,"abstract":"Software fault tolerance techniques can be applied to multi or many-core processors benefitting of the multiplicity of cores. The MPPA Coolidge many-core processor developed by KALRAY (Grenoble, France) was selected in the frame of OVNIPROM1 project as a target for the implementation of the N-Modular Redundancy and M-Partitions (NMR-MPar) fault tolerance technique developed at TIMA. This paper describes the implementation of this technique applied to the MPPA processor for its use as the heart of a nanosatellite On-Board Computer (OBC) to deal with errors produced by radiation effects.","PeriodicalId":404536,"journal":{"name":"2021 IEEE 22nd Latin American Test Symposium (LATS)","volume":"194 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 22nd Latin American Test Symposium (LATS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LATS53581.2021.9651773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Software fault tolerance techniques can be applied to multi or many-core processors benefitting of the multiplicity of cores. The MPPA Coolidge many-core processor developed by KALRAY (Grenoble, France) was selected in the frame of OVNIPROM1 project as a target for the implementation of the N-Modular Redundancy and M-Partitions (NMR-MPar) fault tolerance technique developed at TIMA. This paper describes the implementation of this technique applied to the MPPA processor for its use as the heart of a nanosatellite On-Board Computer (OBC) to deal with errors produced by radiation effects.