Schreier decomposition of loops

P. Nagy
{"title":"Schreier decomposition of loops","authors":"P. Nagy","doi":"10.1109/SACI.2015.7208186","DOIUrl":null,"url":null,"abstract":"The aims of this paper are to find algebraic characterizations of Schreier loops and explore the limits of the non-associative generalization of the theory of Schreier extensions. A loop can have Schreier decomposition with respect to a normal subgroup if and only if the subgroup is the middle and right nuclear. In this case the conjugation by elements of the loop induces inner automorphisms on the normal subgroup if and only if the subgroup commutes with a suitable left transversal through the identity. Schreier loops which are Schreier extensions of the same loop by the same normal subgroups are characterized.","PeriodicalId":312683,"journal":{"name":"2015 IEEE 10th Jubilee International Symposium on Applied Computational Intelligence and Informatics","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 10th Jubilee International Symposium on Applied Computational Intelligence and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2015.7208186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aims of this paper are to find algebraic characterizations of Schreier loops and explore the limits of the non-associative generalization of the theory of Schreier extensions. A loop can have Schreier decomposition with respect to a normal subgroup if and only if the subgroup is the middle and right nuclear. In this case the conjugation by elements of the loop induces inner automorphisms on the normal subgroup if and only if the subgroup commutes with a suitable left transversal through the identity. Schreier loops which are Schreier extensions of the same loop by the same normal subgroups are characterized.
Schreier循环分解
本文的目的是寻找Schreier环的代数表征,并探讨Schreier扩展理论的非关联推广的极限。当且仅当子群是中核和右核时,一个环对正常子群有Schreier分解。在这种情况下,当且仅当子群通过恒等式与合适的左截线交换时,环上元素的共轭在正规子群上诱导出内自同构。Schreier环是同一环由相同正规子群所作的Schreier扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信