Bottom-Up Leading Macroeconomic Indicators: An Application to Non-Financial Corporate Defaults Using Machine Learning

Tyler Pike, Horacio. Sapriza, Tom Zimmermann
{"title":"Bottom-Up Leading Macroeconomic Indicators: An Application to Non-Financial Corporate Defaults Using Machine Learning","authors":"Tyler Pike, Horacio. Sapriza, Tom Zimmermann","doi":"10.17016/FEDS.2019.070","DOIUrl":null,"url":null,"abstract":"This paper constructs a leading macroeconomic indicator from microeconomic data using recent machine learning techniques. Using tree-based methods, we estimate probabilities of default for publicly traded non-financial firms in the United States. We then use the cross-section of out-of-sample predicted default probabilities to construct a leading indicator of non-financial corporate health. The index predicts real economic outcomes such as GDP growth and employment up to eight quarters ahead. Impulse responses validate the interpretation of the index as a measure of financial stress.","PeriodicalId":153113,"journal":{"name":"Board of Governors of the Federal Reserve System Research Series","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Board of Governors of the Federal Reserve System Research Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17016/FEDS.2019.070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper constructs a leading macroeconomic indicator from microeconomic data using recent machine learning techniques. Using tree-based methods, we estimate probabilities of default for publicly traded non-financial firms in the United States. We then use the cross-section of out-of-sample predicted default probabilities to construct a leading indicator of non-financial corporate health. The index predicts real economic outcomes such as GDP growth and employment up to eight quarters ahead. Impulse responses validate the interpretation of the index as a measure of financial stress.
自下而上的领先宏观经济指标:使用机器学习在非金融企业违约中的应用
本文使用最新的机器学习技术从微观经济数据构建了一个领先的宏观经济指标。使用基于树的方法,我们估计了美国上市非金融公司的违约概率。然后,我们使用样本外预测违约概率的横截面来构建非金融企业健康状况的领先指标。该指数预测未来8个季度的实际经济结果,如GDP增长和就业。冲动反应验证了该指数作为金融压力衡量指标的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信