Live demonstration: A bio-inspired event-based size and position invariant human posture recognition algorithm

Shoushun Chen, B. Martini, E. Culurciello
{"title":"Live demonstration: A bio-inspired event-based size and position invariant human posture recognition algorithm","authors":"Shoushun Chen, B. Martini, E. Culurciello","doi":"10.1109/ISCAS.2009.5117865","DOIUrl":null,"url":null,"abstract":"We demonstrate a realtime human postures recognition platform. The algorithm employs temporal difference imaging between video sequences as input and then decompose the contour of the active object into vectorial line segments. A scheme based on simplified Line Segment Hausdorff Distance combined with projection histograms is proposed to achieve size and position invariance recognition. Inspired by the hierarchical model of human visual system, the whole classification is described as a coarse to fine procedure. 88% average realtime recognition rate is achieved in the experiment.","PeriodicalId":388394,"journal":{"name":"2009 IEEE International Symposium on Circuits and Systems","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2009.5117865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We demonstrate a realtime human postures recognition platform. The algorithm employs temporal difference imaging between video sequences as input and then decompose the contour of the active object into vectorial line segments. A scheme based on simplified Line Segment Hausdorff Distance combined with projection histograms is proposed to achieve size and position invariance recognition. Inspired by the hierarchical model of human visual system, the whole classification is described as a coarse to fine procedure. 88% average realtime recognition rate is achieved in the experiment.
现场演示:一种生物启发的基于事件的大小和位置不变的人体姿势识别算法
我们演示了一个实时人体姿势识别平台。该算法采用视频序列间的时间差分成像作为输入,然后将活动目标的轮廓分解为矢量线段。提出了一种基于简化线段豪斯多夫距离与投影直方图相结合的尺寸和位置不变性识别方案。受人类视觉系统层次模型的启发,整个分类过程被描述为一个从粗到精的过程。实验的平均实时识别率达到88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信