Rational equivalence of unimodular circulants

S. Pierce
{"title":"Rational equivalence of unimodular circulants","authors":"S. Pierce","doi":"10.6028/JRES.078B.008","DOIUrl":null,"url":null,"abstract":"Let P be the n X n matrix satisfying P I2= . . ,= P\" _ I , I/ = P \" , 1= 1 a nd all other entries O. The elements of the group rin g Z [P] are caJl ed integral circ ulants. Let G be the group in Z [P] consisting of the pos itive de finite symme tric unimodula r ele ments. M. Ne wma n [2, p. 198] as ks whi ch me mbers of G are ra tionall y equivalent to [ 1/. Th e a nswer to thi s question is in fact a n easy co nseque nce of th e Hasse norm theore m [1 , p. 186]. , TH EO REM : A LL members of G a re rat iona LLy equivalent to In. PROOF: Let A EG. As noted in [2 , p. 198] , we must show that an y eigenvalue A of A is of the form aa for some a in QI/' the nth cyclotomic fi e ld . Le t K be the real s ubfield of index 2 in Q\". We must show A is a norm from Q\" to K. If n = 2p \", p a prime, the n p is fully r amifi ed in Q 1/. I n any othe r case, Q\" is unramified over K at all finit e primes. So at most one finite prim e ramifies fro m K to Q\". N ow A is totally positive, so A is a norm at all Archimedean localiza tions. And A is a unit ; thu s A is a norm at all finite localizations, except , poss ibly, one. By the product formula , A is a norm ever ywhe re, and hence, by th e Hasse norm theore m, A is a global norm .","PeriodicalId":166823,"journal":{"name":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1974-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/JRES.078B.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let P be the n X n matrix satisfying P I2= . . ,= P" _ I , I/ = P " , 1= 1 a nd all other entries O. The elements of the group rin g Z [P] are caJl ed integral circ ulants. Let G be the group in Z [P] consisting of the pos itive de finite symme tric unimodula r ele ments. M. Ne wma n [2, p. 198] as ks whi ch me mbers of G are ra tionall y equivalent to [ 1/. Th e a nswer to thi s question is in fact a n easy co nseque nce of th e Hasse norm theore m [1 , p. 186]. , TH EO REM : A LL members of G a re rat iona LLy equivalent to In. PROOF: Let A EG. As noted in [2 , p. 198] , we must show that an y eigenvalue A of A is of the form aa for some a in QI/' the nth cyclotomic fi e ld . Le t K be the real s ubfield of index 2 in Q". We must show A is a norm from Q" to K. If n = 2p ", p a prime, the n p is fully r amifi ed in Q 1/. I n any othe r case, Q" is unramified over K at all finit e primes. So at most one finite prim e ramifies fro m K to Q". N ow A is totally positive, so A is a norm at all Archimedean localiza tions. And A is a unit ; thu s A is a norm at all finite localizations, except , poss ibly, one. By the product formula , A is a norm ever ywhe re, and hence, by th e Hasse norm theore m, A is a global norm .
单模循环的有理等价
设P是n × n矩阵满足p2 =。,= P" _ I, I/ = P", 1= 1 a,以及所有其他项O.群中的元素Z [P]是正则积分循环。设G为Z [P]中由正定有限对称单模元组成的群。M. newma n [2, p. 198]作为k,其中G的所有成员都与[1/]相对相等。这个问题的答案实际上是哈塞范数定理[1,第186页]的一个简单推论。, EO - REM: G的A - LL个元素与l - 1等价。证明:让一个例子。如[2,p. 198]所述,我们必须证明A的y特征值A对于QI/' n个周期场中的某个A具有aa的形式。设K为Q '中指标2的实s子域。我们必须证明A是从Q '到k的范数,如果n = 2p ', p ',则n p在q1 /中是完全正则化的。在任何其他情况下,Q ' '在所有有限的e '处都是无分支的。所以最多有一个有限质数e从K延伸到Q 'N现在A是完全正的,所以A是所有阿基米德定位的范数。A是一个单位;所以A在所有有限域上都是范数,可能除了一个。根据乘积公式,A在任何地方都是范数,因此,根据哈塞范数定理m, A是全局范数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信