3D Edge Convolution in Deep Neural Network Implementation for Land Cover Semantic Segmentation of Airborne LiDAR Data

Nur Hamid, A. Wibisono, M. A. Ma'sum, Ahmad Gamal, Roni Ardhianto, A. M. Arymurthy, W. Jatmiko
{"title":"3D Edge Convolution in Deep Neural Network Implementation for Land Cover Semantic Segmentation of Airborne LiDAR Data","authors":"Nur Hamid, A. Wibisono, M. A. Ma'sum, Ahmad Gamal, Roni Ardhianto, A. M. Arymurthy, W. Jatmiko","doi":"10.1109/ACIRS.2019.8935980","DOIUrl":null,"url":null,"abstract":"3-dimensional data contains more informative visualization than a 2-dimensional one. LiDAR sensor produces 3D data or point cloud data. There have been many implementations of LiDAR data such as for building detection, urban area modeling, and land cover analysis. This study will analyze land cover because of its substantial benefits. The purpose of this study is to produce semantic segmentation of land cover from LiDAR data by implementing EdgeConv Algorithm from Dynamic Graph Convolutional Neural Network (DGCNN). The dataset in this study is LiDAR data of Kupang, one of the areas in Indonesia. This work achieves the average accuracy of 67.76% for DGCNN better than the state-of-the-art method PointNet (previous method) with 64.97% by implementing the point cloud dataset from LiDAR data of Kupang. This is because the edge convolution could recognize the global shape structure and local neighborhood information so that it could improve the segmentation performance result.","PeriodicalId":338050,"journal":{"name":"2019 4th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 4th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIRS.2019.8935980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

3-dimensional data contains more informative visualization than a 2-dimensional one. LiDAR sensor produces 3D data or point cloud data. There have been many implementations of LiDAR data such as for building detection, urban area modeling, and land cover analysis. This study will analyze land cover because of its substantial benefits. The purpose of this study is to produce semantic segmentation of land cover from LiDAR data by implementing EdgeConv Algorithm from Dynamic Graph Convolutional Neural Network (DGCNN). The dataset in this study is LiDAR data of Kupang, one of the areas in Indonesia. This work achieves the average accuracy of 67.76% for DGCNN better than the state-of-the-art method PointNet (previous method) with 64.97% by implementing the point cloud dataset from LiDAR data of Kupang. This is because the edge convolution could recognize the global shape structure and local neighborhood information so that it could improve the segmentation performance result.
基于深度神经网络的三维边缘卷积在机载激光雷达数据地表覆盖语义分割中的实现
三维数据比二维数据包含更多的信息可视化。激光雷达传感器产生3D数据或点云数据。激光雷达数据已经有许多实现,如建筑检测、城市区域建模和土地覆盖分析。这项研究将分析土地覆盖,因为它的实质利益。本研究的目的是通过实现动态图卷积神经网络(DGCNN)的EdgeConv算法,从LiDAR数据中产生土地覆盖的语义分割。本研究的数据集为印尼库邦地区的激光雷达数据。通过实现来自库邦激光雷达数据的点云数据集,DGCNN的平均准确率为67.76%,优于最先进的PointNet方法(之前的方法)的64.97%。这是因为边缘卷积可以识别全局形状结构和局部邻域信息,从而提高分割效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信