{"title":"Surface Flashover under RF and Unipolar Excitation at Atmospheric Conditions","authors":"J. Krile, A. Neuber, G. Edmiston, H. Krompholz","doi":"10.1109/MODSYM.2006.365171","DOIUrl":null,"url":null,"abstract":"Flashover along insulators or insulating support structures has to be carefully addressed in the design of any DC, AC, or pulsed high voltage device. Although there is a large body of data on unipolar surface flashover in the atmosphere, which has led to empirical design rules primarily for the power distribution industry, the physics of the involved processes is widely unknown. The major limiting factor in the transmission of high power microwaves (HPM) into the atmosphere has been the vacuum-air interface. Both the unipolar and HPM surface flashover cases have been studied under vacuum conditions and have been found to have the same dominant mechanisms. Similarities between HPM window flashover on the air side and unipolar flashover are observed in an atmospheric environment as well","PeriodicalId":410776,"journal":{"name":"Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MODSYM.2006.365171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Flashover along insulators or insulating support structures has to be carefully addressed in the design of any DC, AC, or pulsed high voltage device. Although there is a large body of data on unipolar surface flashover in the atmosphere, which has led to empirical design rules primarily for the power distribution industry, the physics of the involved processes is widely unknown. The major limiting factor in the transmission of high power microwaves (HPM) into the atmosphere has been the vacuum-air interface. Both the unipolar and HPM surface flashover cases have been studied under vacuum conditions and have been found to have the same dominant mechanisms. Similarities between HPM window flashover on the air side and unipolar flashover are observed in an atmospheric environment as well