An adaptive and predictive architecture for parameterised PIV algorithms

Nathalie Bochard, A. Aubert, V. Fresse
{"title":"An adaptive and predictive architecture for parameterised PIV algorithms","authors":"Nathalie Bochard, A. Aubert, V. Fresse","doi":"10.1109/FPT.2006.270318","DOIUrl":null,"url":null,"abstract":"Particle image velocimetry (PIV) algorithms aim at flow visualisation and dynamic flow measurement. All existing PIV techniques are computing intensive and are mainly used in critical conditions. For a given experimental environment, several parameters must be set so that PIV algorithm must be parameterised. A dedicated architecture is therefore unsuitable unless it is adaptive. The aim of this work is to prove that our generic and adaptive FPGA-based system for real-time PIV applications previously designed can easily be modified when some parameters vary. From a unique structure and library of resources, the designer adapts the architecture according to the parameters. Time and resource prediction models help the designer to find the most suitable structure before the implementation process and ensure only one implementation without feedback. As a result, the design flow is fast and reliable","PeriodicalId":354940,"journal":{"name":"2006 IEEE International Conference on Field Programmable Technology","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Field Programmable Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2006.270318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Particle image velocimetry (PIV) algorithms aim at flow visualisation and dynamic flow measurement. All existing PIV techniques are computing intensive and are mainly used in critical conditions. For a given experimental environment, several parameters must be set so that PIV algorithm must be parameterised. A dedicated architecture is therefore unsuitable unless it is adaptive. The aim of this work is to prove that our generic and adaptive FPGA-based system for real-time PIV applications previously designed can easily be modified when some parameters vary. From a unique structure and library of resources, the designer adapts the architecture according to the parameters. Time and resource prediction models help the designer to find the most suitable structure before the implementation process and ensure only one implementation without feedback. As a result, the design flow is fast and reliable
参数化PIV算法的自适应预测体系结构
粒子图像测速(PIV)算法旨在实现流动可视化和动态流量测量。现有的所有PIV技术都是计算密集型的,并且主要用于临界条件。对于给定的实验环境,必须设置多个参数,以便对PIV算法进行参数化。因此,专用的体系结构是不合适的,除非它是自适应的。这项工作的目的是证明我们以前设计的用于实时PIV应用的通用和自适应fpga系统在某些参数发生变化时可以很容易地进行修改。从一个独特的结构和资源库,设计师根据参数调整建筑。时间和资源预测模型帮助设计师在实施过程之前找到最合适的结构,并确保只有一次实施而没有反馈。因此,设计流程快速可靠
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信