Semi–Synthetic Dataset for the Evaluation of Motion Compensation Approaches for Voltage Sensitive Dye Imaging

Philipp Flotho, L. Haab, David Eckert, Kazutaka Takahashi, K. Schwerdtfeger, D. Strauss
{"title":"Semi–Synthetic Dataset for the Evaluation of Motion Compensation Approaches for Voltage Sensitive Dye Imaging","authors":"Philipp Flotho, L. Haab, David Eckert, Kazutaka Takahashi, K. Schwerdtfeger, D. Strauss","doi":"10.1109/NER.2019.8716905","DOIUrl":null,"url":null,"abstract":"Intracranial, functional optical imaging (OI) of intrinsic signals (like blood oxygenation coupled reflection changes) and of extrinsic properties of voltage sensitive probes (like voltage-sensitive dyes) belongs to a group of invasive neuroimaging techniques with very high temporal and spatial resolutions on a meso–to macroscopic scale. Voltage sensitive dye imaging (VSDI) images brain activity with low temporal delays, but the raw signal has a poor signal to noise ratio.An important pre–processing step for many biomedical imaging techniques is image registration and motion compensation. We can apply motion compensation successfully for optical imaging of intrinsic signals but VSDI recordings have low spatial contrast and often do not contain fine grained texture details which are crucial for successful image based motion compensation. In this work, we design a semi–synthetic dataset based on real recordings and a dummy voltage sensitive dye response for the evaluation of advanced motion compensation strategies for VSDI. This dataset aims to be used as a benchmark for the development of novel motion compensation strategies for VSDI and to derive error bounds of the methodologies with respect to motion.","PeriodicalId":356177,"journal":{"name":"2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2019.8716905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Intracranial, functional optical imaging (OI) of intrinsic signals (like blood oxygenation coupled reflection changes) and of extrinsic properties of voltage sensitive probes (like voltage-sensitive dyes) belongs to a group of invasive neuroimaging techniques with very high temporal and spatial resolutions on a meso–to macroscopic scale. Voltage sensitive dye imaging (VSDI) images brain activity with low temporal delays, but the raw signal has a poor signal to noise ratio.An important pre–processing step for many biomedical imaging techniques is image registration and motion compensation. We can apply motion compensation successfully for optical imaging of intrinsic signals but VSDI recordings have low spatial contrast and often do not contain fine grained texture details which are crucial for successful image based motion compensation. In this work, we design a semi–synthetic dataset based on real recordings and a dummy voltage sensitive dye response for the evaluation of advanced motion compensation strategies for VSDI. This dataset aims to be used as a benchmark for the development of novel motion compensation strategies for VSDI and to derive error bounds of the methodologies with respect to motion.
用于评价电压敏感染料成像运动补偿方法的半合成数据集
颅内功能光学成像(OI)的内在信号(如血氧耦合反射变化)和电压敏感探针的外在特性(如电压敏感染料)属于一组侵入性神经成像技术,在中观到宏观尺度上具有很高的时间和空间分辨率。电压敏感染料成像(VSDI)具有较低的时间延迟,但原始信号的信噪比较差。在许多生物医学成像技术中,一个重要的预处理步骤是图像配准和运动补偿。我们可以成功地将运动补偿应用于固有信号的光学成像,但VSDI记录的空间对比度低,并且通常不包含精细的纹理细节,而这些细节对于成功的基于图像的运动补偿至关重要。在这项工作中,我们设计了一个基于真实记录和假电压敏感染料响应的半合成数据集,用于评估VSDI的高级运动补偿策略。该数据集旨在作为开发VSDI新运动补偿策略的基准,并推导出有关运动的方法的误差界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信