An automated event detection and classification system for abyssal time-series images of Station M, NE Pacific

D. Cline, D. Edgington, K. Smith, Michael F. Vardaro, L. Kuhnz, J. A. Ellena
{"title":"An automated event detection and classification system for abyssal time-series images of Station M, NE Pacific","authors":"D. Cline, D. Edgington, K. Smith, Michael F. Vardaro, L. Kuhnz, J. A. Ellena","doi":"10.23919/OCEANS.2009.5422292","DOIUrl":null,"url":null,"abstract":"The time-study data collected at the Station M site off the coast of central California includes high quality still-frame images taken in 1-hour time-lapse increments. The approximately 67,000 time-lapse images collected would take an unfeasible amount of time to fully analyze manually, and therefore would benefit from automated analysis. Towards this end, this work is an aid in the significant effort to analyze megafaunal activity and sedimentation events using an adapted version of the Automated Video Event Detection and Classification System (AVEDac) formerly designed by MBARI to analyze video collected from MBARI's remotely operated underwater vehicles (ROVs) video. This paper describes, in general, the automated system that will aid in the abundance and distribution studies of animals at the Station M site.","PeriodicalId":119977,"journal":{"name":"OCEANS 2009","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2009","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/OCEANS.2009.5422292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The time-study data collected at the Station M site off the coast of central California includes high quality still-frame images taken in 1-hour time-lapse increments. The approximately 67,000 time-lapse images collected would take an unfeasible amount of time to fully analyze manually, and therefore would benefit from automated analysis. Towards this end, this work is an aid in the significant effort to analyze megafaunal activity and sedimentation events using an adapted version of the Automated Video Event Detection and Classification System (AVEDac) formerly designed by MBARI to analyze video collected from MBARI's remotely operated underwater vehicles (ROVs) video. This paper describes, in general, the automated system that will aid in the abundance and distribution studies of animals at the Station M site.
东北太平洋M站深海时间序列图像自动事件检测与分类系统
在加利福尼亚中部海岸的M站站点收集的时间研究数据包括以1小时为增量的高质量静止帧图像。收集到的大约67,000张延时图像需要大量的时间才能完全手动分析,因此可以从自动化分析中获益。为了实现这一目标,这项工作将有助于分析巨型动物活动和沉积事件,使用MBARI以前设计的自动视频事件检测和分类系统(AVEDac)的改编版本,分析从MBARI远程操作的水下航行器(rov)视频收集的视频。本文概述了将有助于M站动物数量和分布研究的自动化系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信