{"title":"Study on propagation property of self-focusing pin-like beams","authors":"Kaichen Pi, Y.-G. Kuang, Yuanshen Xiao, Xiang Zhang","doi":"10.1117/12.2602872","DOIUrl":null,"url":null,"abstract":"Radially symmetric Airy-like beams have the ability to autofocus abruptly, which leads to a wild application, for instance, particle manipulation and light bullets. On the basic of the theory of 1D self-accelerating Airy beam, this thesis starts the research on propagation property of Airy-like self-focusing pin-like beams. Based on the theory of stationary phase calculation, we obtain the trajectory function of Airy-like beams and dynamics of the optical beam before the focus and beyond. With the method of beam split-step Fourier method, we theoretically analyze the transverse and longitude amplitude trending of this optical beam. It turns out that Airy-like beam propose an abruptly autofocusing property like circularly symmetric Airy beam, its propagation follows a parabolic trajectory and tends to focus on the axial; after focusing, the optical beam morphs into a Bessel-like beam, its main lobe size decreases during the propagation and finally becomes pin-like.","PeriodicalId":330466,"journal":{"name":"Sixteenth National Conference on Laser Technology and Optoelectronics","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixteenth National Conference on Laser Technology and Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2602872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Radially symmetric Airy-like beams have the ability to autofocus abruptly, which leads to a wild application, for instance, particle manipulation and light bullets. On the basic of the theory of 1D self-accelerating Airy beam, this thesis starts the research on propagation property of Airy-like self-focusing pin-like beams. Based on the theory of stationary phase calculation, we obtain the trajectory function of Airy-like beams and dynamics of the optical beam before the focus and beyond. With the method of beam split-step Fourier method, we theoretically analyze the transverse and longitude amplitude trending of this optical beam. It turns out that Airy-like beam propose an abruptly autofocusing property like circularly symmetric Airy beam, its propagation follows a parabolic trajectory and tends to focus on the axial; after focusing, the optical beam morphs into a Bessel-like beam, its main lobe size decreases during the propagation and finally becomes pin-like.