Research on the scheduling strategy of intelligent manufacturing workshop based on machine learning

Haonan Guan
{"title":"Research on the scheduling strategy of intelligent manufacturing workshop based on machine learning","authors":"Haonan Guan","doi":"10.1109/ICAICE54393.2021.00016","DOIUrl":null,"url":null,"abstract":"In the context of industry 4.0, this paper proposes an improved genetic algorithm for optimizing the scheduling operation of smart manufacturing shops. Coding matrixes are separately developed for the manufacturing processes and machines and a retention operator is added to retain the optimal individuals in each generation of the population. After the approximate global optimal solution is obtained, the chromosomes are decoded by the adoption of an insertion greedy decoding algorithm. Simulation results have demonstrated the effectiveness of the algorithm.","PeriodicalId":388444,"journal":{"name":"2021 2nd International Conference on Artificial Intelligence and Computer Engineering (ICAICE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Conference on Artificial Intelligence and Computer Engineering (ICAICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICE54393.2021.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of industry 4.0, this paper proposes an improved genetic algorithm for optimizing the scheduling operation of smart manufacturing shops. Coding matrixes are separately developed for the manufacturing processes and machines and a retention operator is added to retain the optimal individuals in each generation of the population. After the approximate global optimal solution is obtained, the chromosomes are decoded by the adoption of an insertion greedy decoding algorithm. Simulation results have demonstrated the effectiveness of the algorithm.
基于机器学习的智能制造车间调度策略研究
在工业4.0背景下,本文提出了一种改进的遗传算法来优化智能制造车间的调度操作。编码矩阵分别为制造过程和机器开发,并添加保留算子以保留每一代人口中的最佳个体。在得到近似全局最优解后,采用插入贪婪解码算法对染色体进行解码。仿真结果证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信