M. Teena , A. Manickavasagan , A.M. Al-Sadi , R. Al-Yahyai , M.L. Deadman , A. Al-Ismaili
{"title":"Near infrared imaging to detect Aspergillus flavus infection in three varieties of dates","authors":"M. Teena , A. Manickavasagan , A.M. Al-Sadi , R. Al-Yahyai , M.L. Deadman , A. Al-Ismaili","doi":"10.1016/j.eaef.2018.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>The present manual sorting technique is not effective to detect fungal infection in dates; especially at the early stage. The potential of near infrared (NIR) area scan imaging (900–1700 nm together as one image) to detect fungal contamination in three popular varieties of dates (Fard, Khalas and Naghal) was investigated. Date samples were treated as three groups: untreated control (UC), sterile control (SC) (surface sterilized, rinsed and dried) and infested samples (IS) (surface sterilized, rinsed, dried and fungal inoculated). The IS was then incubated for 10 days and imaged every 48hr to obtain 5 infection stages namely IS Day2, IS Day4, IS Day6, IS Day8 and IS Day10. In total, 3150 NIR images (UC + SC + five fungal infection stages × 150 images × three date varieties) were acquired and analyzed. The overall highest classification accuracy was 97, 96 and 100% for two-class, six-class and pair-wise models, respectively while comparing IS with UC. Similarly, it was 94, 89 and 94% for two-class, six-class and pair-wise models, respectively while comparing IS with SC. However, when the developed algorithm was tested on pooled dates images (all three varieties combined), the two class model yielded a higher classification accuracy of 83 and 86% for UC and IS, respectively; and 71 and 85% for SC and IS, respectively. Thus, NIR area-scan imaging has the potential to be used as a fast and cheaper technique to detect fungal infection in food industries.</p></div>","PeriodicalId":38965,"journal":{"name":"Engineering in Agriculture, Environment and Food","volume":"11 4","pages":"Pages 169-177"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.eaef.2018.04.002","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering in Agriculture, Environment and Food","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1881836618300788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
The present manual sorting technique is not effective to detect fungal infection in dates; especially at the early stage. The potential of near infrared (NIR) area scan imaging (900–1700 nm together as one image) to detect fungal contamination in three popular varieties of dates (Fard, Khalas and Naghal) was investigated. Date samples were treated as three groups: untreated control (UC), sterile control (SC) (surface sterilized, rinsed and dried) and infested samples (IS) (surface sterilized, rinsed, dried and fungal inoculated). The IS was then incubated for 10 days and imaged every 48hr to obtain 5 infection stages namely IS Day2, IS Day4, IS Day6, IS Day8 and IS Day10. In total, 3150 NIR images (UC + SC + five fungal infection stages × 150 images × three date varieties) were acquired and analyzed. The overall highest classification accuracy was 97, 96 and 100% for two-class, six-class and pair-wise models, respectively while comparing IS with UC. Similarly, it was 94, 89 and 94% for two-class, six-class and pair-wise models, respectively while comparing IS with SC. However, when the developed algorithm was tested on pooled dates images (all three varieties combined), the two class model yielded a higher classification accuracy of 83 and 86% for UC and IS, respectively; and 71 and 85% for SC and IS, respectively. Thus, NIR area-scan imaging has the potential to be used as a fast and cheaper technique to detect fungal infection in food industries.
期刊介绍:
Engineering in Agriculture, Environment and Food (EAEF) is devoted to the advancement and dissemination of scientific and technical knowledge concerning agricultural machinery, tillage, terramechanics, precision farming, agricultural instrumentation, sensors, bio-robotics, systems automation, processing of agricultural products and foods, quality evaluation and food safety, waste treatment and management, environmental control, energy utilization agricultural systems engineering, bio-informatics, computer simulation, computational mechanics, farm work systems and mechanized cropping. It is an international English E-journal published and distributed by the Asian Agricultural and Biological Engineering Association (AABEA). Authors should submit the manuscript file written by MS Word through a web site. The manuscript must be approved by the author''s organization prior to submission if required. Contact the societies which you belong to, if you have any question on manuscript submission or on the Journal EAEF.