Seismic Risk Assessment for Earth Slopes and Dams

E. Rathje
{"title":"Seismic Risk Assessment for Earth Slopes and Dams","authors":"E. Rathje","doi":"10.11159/icgre21.lx.001","DOIUrl":null,"url":null,"abstract":"Seismic risk assessments for earth slopes and dams are based on evaluating the permanent displacements induced by earthquake shaking and more recently probabilistic approaches have been proposed to incorporate uncertainties into the analysis. This presentation will describe newly developed predictive models for earthquake-induced slope displacements based on finite element simulations. The models are developed using both classical regression techniques and artificial neural networks (ANN), and models for both the median displacement and its variability are provided. A missing part of most seismic risk assessments for slopes and dams is the translation of a displacement level into a damage state. This presentation will also outline a seismic fragility framework for earth dams and slopes that is modeled after the approaches used for other types of infrastructure, such as bridges. The framework uses an engineering demand model to predict the permanent displacement as a function of ground motion intensity, and a seismic capacity model to predict the probability of a damage state given the permanent settlement.","PeriodicalId":375467,"journal":{"name":"Proceedings of the 6th World Congress on Civil, Structural, and Environmental Engineering","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th World Congress on Civil, Structural, and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11159/icgre21.lx.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Seismic risk assessments for earth slopes and dams are based on evaluating the permanent displacements induced by earthquake shaking and more recently probabilistic approaches have been proposed to incorporate uncertainties into the analysis. This presentation will describe newly developed predictive models for earthquake-induced slope displacements based on finite element simulations. The models are developed using both classical regression techniques and artificial neural networks (ANN), and models for both the median displacement and its variability are provided. A missing part of most seismic risk assessments for slopes and dams is the translation of a displacement level into a damage state. This presentation will also outline a seismic fragility framework for earth dams and slopes that is modeled after the approaches used for other types of infrastructure, such as bridges. The framework uses an engineering demand model to predict the permanent displacement as a function of ground motion intensity, and a seismic capacity model to predict the probability of a damage state given the permanent settlement.
土坡和坝的地震危险性评价
土坡和水坝的地震风险评估是基于对地震引起的永久位移的评估,最近提出了将不确定性纳入分析的概率方法。本报告将描述基于有限元模拟的地震诱发边坡位移的新开发预测模型。采用经典回归技术和人工神经网络(ANN)建立了模型,并给出了中位位移及其变异性的模型。大多数斜坡和水坝的地震风险评估中缺少的一部分是将位移水平转换为破坏状态。本报告还将概述土坝和斜坡的地震脆弱性框架,该框架是在其他类型的基础设施(如桥梁)使用的方法之后建模的。该框架使用工程需求模型来预测永久位移作为地震动强度的函数,并使用地震能力模型来预测在永久沉降的情况下破坏状态的概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信