On the Robustness of Deep K-Nearest Neighbors

Chawin Sitawarin, David A. Wagner
{"title":"On the Robustness of Deep K-Nearest Neighbors","authors":"Chawin Sitawarin, David A. Wagner","doi":"10.1109/SPW.2019.00014","DOIUrl":null,"url":null,"abstract":"Despite a large amount of attention on adversarial examples, very few works have demonstrated an effective defense against this threat. We examine Deep k-Nearest Neighbor (DkNN), a proposed defense that combines k-Nearest Neighbor (kNN) and deep learning to improve the model's robustness to adversarial examples. It is challenging to evaluate the robustness of this scheme due to a lack of efficient algorithm for attacking kNN classifiers with large k and high-dimensional data. We propose a heuristic attack that allows us to use gradient descent to find adversarial examples for kNN classifiers, and then apply it to attack the DkNN defense as well. Results suggest that our attack is moderately stronger than any naive attack on kNN and significantly outperforms other attacks on DkNN.","PeriodicalId":125351,"journal":{"name":"2019 IEEE Security and Privacy Workshops (SPW)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Security and Privacy Workshops (SPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPW.2019.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

Despite a large amount of attention on adversarial examples, very few works have demonstrated an effective defense against this threat. We examine Deep k-Nearest Neighbor (DkNN), a proposed defense that combines k-Nearest Neighbor (kNN) and deep learning to improve the model's robustness to adversarial examples. It is challenging to evaluate the robustness of this scheme due to a lack of efficient algorithm for attacking kNN classifiers with large k and high-dimensional data. We propose a heuristic attack that allows us to use gradient descent to find adversarial examples for kNN classifiers, and then apply it to attack the DkNN defense as well. Results suggest that our attack is moderately stronger than any naive attack on kNN and significantly outperforms other attacks on DkNN.
关于深度k近邻的鲁棒性
尽管对抗性例子有大量的关注,但很少有作品展示了对这种威胁的有效防御。我们研究了深度k近邻(DkNN),这是一种结合k近邻(kNN)和深度学习的防御方法,以提高模型对对抗示例的鲁棒性。由于缺乏有效的算法来攻击具有大k和高维数据的kNN分类器,因此评估该方案的鲁棒性具有挑战性。我们提出了一种启发式攻击,它允许我们使用梯度下降来找到kNN分类器的对抗性示例,然后将其应用于攻击DkNN防御。结果表明,我们的攻击比任何对kNN的朴素攻击都要强,并且明显优于对DkNN的其他攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信