Protein structure prediction by applying an evolutionary algorithm

R. O. Day, G. Lamont, R. Pachter
{"title":"Protein structure prediction by applying an evolutionary algorithm","authors":"R. O. Day, G. Lamont, R. Pachter","doi":"10.1109/IPDPS.2003.1213291","DOIUrl":null,"url":null,"abstract":"Interest in protein structure prediction is widespread, and has been previously addressed using evolutionary algorithms, such as the simple genetic algorithm (GA), messy GA (mga), fast messy GA (fmGA), and linkage learning GA (LLGA). However, past research used off the shelf software such as GENOCOP, GENESIS, and mGA. In this study we report results of a modified fmGA, which is found to be \"good\" at finding semi-optimal solutions in a reasonable time. Our study focuses on tuning this fmGA in an attempt to improve the effectiveness and efficiency of the algorithm in solving a protein structure and in finding better ways to identify secondary structures. Problem definition, protein model representation, mapping to algorithm domain, tool selection modifications and conducted experiments are discussed.","PeriodicalId":177848,"journal":{"name":"Proceedings International Parallel and Distributed Processing Symposium","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Parallel and Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2003.1213291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Interest in protein structure prediction is widespread, and has been previously addressed using evolutionary algorithms, such as the simple genetic algorithm (GA), messy GA (mga), fast messy GA (fmGA), and linkage learning GA (LLGA). However, past research used off the shelf software such as GENOCOP, GENESIS, and mGA. In this study we report results of a modified fmGA, which is found to be "good" at finding semi-optimal solutions in a reasonable time. Our study focuses on tuning this fmGA in an attempt to improve the effectiveness and efficiency of the algorithm in solving a protein structure and in finding better ways to identify secondary structures. Problem definition, protein model representation, mapping to algorithm domain, tool selection modifications and conducted experiments are discussed.
基于进化算法的蛋白质结构预测
对蛋白质结构预测的兴趣是广泛的,并且以前已经使用进化算法来解决,例如简单遗传算法(GA),混乱遗传算法(mga),快速混乱遗传算法(fmGA)和链接学习遗传算法(LLGA)。然而,过去的研究使用现成的软件,如GENOCOP、GENESIS和mGA。在本研究中,我们报告了一种改进的fmGA的结果,发现它“善于”在合理的时间内找到半最优解。我们的研究重点是调整这个fmGA,试图提高算法在求解蛋白质结构和寻找更好的方法来识别二级结构方面的有效性和效率。讨论了问题定义、蛋白质模型表示、映射到算法域、工具选择修改和已进行的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信