Background subtraction for surveillance videos with camera jitter

Guang Han, Jinkuan Wang, Xi Cai
{"title":"Background subtraction for surveillance videos with camera jitter","authors":"Guang Han, Jinkuan Wang, Xi Cai","doi":"10.1109/ICAWST.2015.7314012","DOIUrl":null,"url":null,"abstract":"Camera jitter occurs frequently in outdoor scenes and poses a great challenge to foreground detection. To meet this challenge, we propose a background subtraction method based on online robust principal component analysis (OR-PCA). We downsample every input frame in a random manner to make the OR-PCA applicable to video processing. Different from most background subtraction methods which rely on pixel-based background models, our method utilizes the low-dimensional subspace constructed by backgrounds of previous frames to estimate background of a new input frame, and hence can well handle the camera jitter. We find that the resulting sparse matrix contains not only the foreground objects but also some sparse noise, and then eliminate the sparse noise to improve the precision of our method. Experimental results demonstrate that, our method achieves remarkable results and outperforms several advanced methods in dealing with the camera jitter.","PeriodicalId":407093,"journal":{"name":"2015 IEEE 7th International Conference on Awareness Science and Technology (iCAST)","volume":"180 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 7th International Conference on Awareness Science and Technology (iCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAWST.2015.7314012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Camera jitter occurs frequently in outdoor scenes and poses a great challenge to foreground detection. To meet this challenge, we propose a background subtraction method based on online robust principal component analysis (OR-PCA). We downsample every input frame in a random manner to make the OR-PCA applicable to video processing. Different from most background subtraction methods which rely on pixel-based background models, our method utilizes the low-dimensional subspace constructed by backgrounds of previous frames to estimate background of a new input frame, and hence can well handle the camera jitter. We find that the resulting sparse matrix contains not only the foreground objects but also some sparse noise, and then eliminate the sparse noise to improve the precision of our method. Experimental results demonstrate that, our method achieves remarkable results and outperforms several advanced methods in dealing with the camera jitter.
背景减法监控视频与摄像机抖动
相机抖动在室外场景中频繁出现,给前景检测带来了很大的挑战。为了应对这一挑战,我们提出了一种基于在线鲁棒主成分分析(OR-PCA)的背景减除方法。我们以随机的方式对每个输入帧进行下采样,使OR-PCA适用于视频处理。与大多数依赖于基于像素的背景模型的背景减除方法不同,该方法利用前一帧背景构造的低维子空间来估计新输入帧的背景,可以很好地处理相机抖动。我们发现得到的稀疏矩阵不仅包含前景目标,还包含一些稀疏噪声,然后消除稀疏噪声以提高我们的方法的精度。实验结果表明,该方法在处理相机抖动方面取得了显著的效果,并且优于几种先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信